1
GATE ME 2011
+1
-0.3
Eigen values of a real symmetric matrix are always
A
positive
B
negative
C
real
D
$$162.$$ $$\left[ {\rm A} \right]$$ is a square
2
GATE ME 2011
+1
-0.3
Consider the following system of equations
$$2{x_1} + {x_2} + {x_3} = 0,\,\,{x_2} - {x_3} = 0$$ and $${x_1} + {x_2} = 0.$$
This system has
A
a unique solution
B
no solution
C
infinite number of solutions
D
five solutions
3
GATE ME 2010
+1
-0.3
One of the eigen vector of the matrix $$A = \left[ {\matrix{ 2 & 2 \cr 1 & 3 \cr } } \right]$$ is
A
$$\left[ {\matrix{ 2 \cr { - 1} \cr } } \right]$$
B
$$\left[ {\matrix{ 2 \cr 1 \cr } } \right]$$
C
$$\left[ {\matrix{ 4 \cr 1 \cr } } \right]$$
D
$$\left[ {\matrix{ 1 \cr { - 1} \cr } } \right]$$
4
GATE ME 2009
+1
-0.3
For a matrix $$\left[ M \right] = \left[ {\matrix{ {{3 \over 5}} & {{4 \over 5}} \cr x & {{3 \over 5}} \cr } } \right].$$ The transpose of the matrix is equal to the inverse of the matrix, $${\left[ M \right]^T} = {\left[ M \right]^{ - 1}}.$$ The value of $$x$$ is given by
A
$${ - {4 \over 5}}$$
B
$${ - {3 \over 5}}$$
C
$${{3 \over 5}}$$
D
$${{4 \over 5}}$$
GATE ME Subjects
EXAM MAP
Medical
NEET