1
GATE ME 2014 Set 3
+1
-0.3
Consider a $$3 \times 3$$ real symmetric matrix $$S$$ such that two of its eigen values are $$a \ne 0,$$ $$b\,\, \ne 0$$ with respective eigen vectors $$\left[ {\matrix{ {{x_1}} \cr {{x_2}} \cr {{x_3}} \cr } } \right],\left[ {\matrix{ {{y_1}} \cr {{y_2}} \cr {{y_3}} \cr } } \right].$$ If $$a\, \ne b$$ then $${x_1}{y_1} + {x_2}{y_2} + {x_3}{y_3}$$ equals
A
$$a$$
B
$$b$$
C
$$ab$$
D
$$0$$
2
GATE ME 2013
+1
-0.3
The eigen values of a symmetric matrix are all
A
complex with non-zero positive imaginary part.
B
complex with non-zero negative imaginary part.
C
real
D
pure imaginary
3
GATE ME 2012
+1
-0.3
For the matrix $$A = \left[ {\matrix{ 5 & 3 \cr 1 & 3 \cr } } \right],$$ ONE of the normalized eigen vectors is given as
A
$$\left( {\matrix{ {{1 \over 2}} \cr {{{\sqrt 3 } \over 2}} \cr } } \right)$$
B
$$\left( {\matrix{ {{1 \over {\sqrt 2 }}} \cr {{{ - 1} \over {\sqrt 2 }}} \cr } } \right)$$
C
$$\left( {\matrix{ {{3 \over {\sqrt {10} }}} \cr {{{ - 1} \over {\sqrt {10} }}} \cr } } \right)$$
D
$$\left( {\matrix{ {{1 \over 5}} \cr {{2 \over {\sqrt 5 }}} \cr } } \right)$$
4
GATE ME 2011
+1
-0.3
Eigen values of a real symmetric matrix are always
A
positive
B
negative
C
real
D
$$162.$$ $$\left[ {\rm A} \right]$$ is a square
GATE ME Subjects
EXAM MAP
Medical
NEET