1
GATE CSE 2006
MCQ (Single Correct Answer)
+2
-0.6
Consider the set S = {a, b, c, d}. Consider the following 4 partitions $$\,{\pi _1},\,{\pi _2},\,{\pi _3},\,{\pi _4}$$ on $$S:\,{\pi _1} = \left\{ {\overline {a\,b\,c\,d} } \right\},\,{\pi _2} = \left\{ {\overline {a\,b\,} ,\,\overline {c\,d} } \right\},\,{\pi _3} = \left\{ {\overline {a\,b\,c\,} ,\,\overline d } \right\},\,{\pi _4} = \left\{ {\overline {a\,} ,\,\overline b ,\,\overline c ,\,\overline d } \right\}.$$ Let $$ \prec $$ be the partial order on the set of partitions $$S' = \{ {\pi _1},\,{\pi _2},\,{\pi _3},\,{\pi _4}\} $$ defined as follows: $${\pi _i} \prec \,\,{\pi _j}$$ if and only if $${\pi _i} $$ refines $${\pi _j}$$. The poset diagram for $$(S',\, \prec )$$ is
A
GATE CSE 2006 Discrete Mathematics - Set Theory & Algebra Question 42 English Option 1
B
GATE CSE 2006 Discrete Mathematics - Set Theory & Algebra Question 42 English Option 2
C
GATE CSE 2006 Discrete Mathematics - Set Theory & Algebra Question 42 English Option 3
D
GATE CSE 2006 Discrete Mathematics - Set Theory & Algebra Question 42 English Option 4
2
GATE CSE 2006
MCQ (Single Correct Answer)
+2
-0.6
Let S = {1, 2, 3,....., m} , m > 3. Let $${X_1},\,....,\,{X_n}$$ be subsets of S each of size 3. Define a function f from S to the set of natural numbers as, f (i) is the number of sets $${X_j}$$ that contain the element i. That is $$f(i) = \left\{ {j\left| i \right.\,\, \in \,{X_j}} \right\}\left| . \right.$$

Then $$\sum\limits_{i - 1}^m {f\,(i)} $$ is

A
3m
B
3n
C
2m + 1
D
2n + 1
3
GATE CSE 2006
MCQ (Single Correct Answer)
+2
-0.6
Given a set of elements N = {1, 2, ....., n} and two arbitrary subsets $$A\, \subseteq \,N\,$$ and $$B\, \subseteq \,N\,$$, how many of the n! permutations $$\pi $$ from N to N satisfy $$\min \,\left( {\pi \,\left( A \right)} \right) = \min \,\left( {\pi \,\left( B \right)} \right)$$, where min (S) is the smallest integer in the set of integers S, and $${\pi \,\left( S \right)}$$ is the set of integers obtained by applying permutation $${\pi}$$ to each element of S?
A
$$\left( {n - \left| {A\, \cup \,B} \right|} \right)\,\left| A \right|\,\left| B \right|$$
B
$$\left( {{{\left| A \right|}^2} + {{\left| B \right|}^2}} \right)\,{n^2}$$
C
$$n!{{\left| {A\, \cap \,B} \right|} \over {\left| {A\, \cup B} \right|}}$$
D
$$\,{{{{\left| {A\, \cap \,B} \right|}^2}} \over {\left( {\matrix{ n \cr {\left| {A\, \cup \,B} \right|} \cr } } \right)}}$$
4
GATE CSE 2005
MCQ (Single Correct Answer)
+2
-0.6
Let A be a set with n elements. Let C be a collection of distinct subsets of A such that for any two subsets $${S_1}$$ and $${S_2}$$ in C, either $${S_1}\, \subset \,{S_2}$$ or $${S_2}\, \subset \,{S_1}$$. What is the maximum cardinality of C?
A
n
B
n + 1
C
$${2^{n - 1}}\, + \,1$$
D
n!
GATE CSE Subjects
Software Engineering
Web Technologies
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12