1
GATE CSE 2015 Set 2
Numerical
+2
-0
Let $$X$$ and $$Y$$ denote the sets containing $$2$$ and $$20$$ distinct objects respectively and $$𝐹$$ denote the set of all possible functions defined from $$X$$ to $$Y$$. Let $$f$$ be randomly chosen from $$F.$$ The probability of $$f$$ being one-to-one is ________.
2
GATE CSE 2015 Set 3
+2
-0.6
Let $$R$$ be a relation on the set of ordered pairs of positive integers such that $$\left( {\left( {p,q} \right),\left( {r,s} \right)} \right) \in R$$ if and only if $$p - s = q - r.$$ Which one of the following is true about $$R$$?
A
Both reflexive and symmetric
B
Reflexive but not symmetric
C
Not reflexive but symmetric
D
Neither reflexive nor symmetric
3
GATE CSE 2014 Set 1
Numerical
+2
-0
Let S denote the set of all functions $$f:\,{\{ 0,\,1\} ^4}\, \to \,\{ 0,\,1\}$$. Denote by N the number of functions from S to the set {0, 1}. The value of $${\log _2}$$ $${\log _2}$$ N is___________________
4
GATE CSE 2014 Set 3
+2
-0.6
Consider the set of all functions $$f:\left\{ {0,\,1,.....,2014} \right\} \to \left\{ {0,\,1,.....,2014} \right\}$$ such that $$f\left( {f\left( i \right)} \right) = i,\,\,\,$$ for all $$0 \le i \le 2014.$$ Consider the following statements:
$$P$$. For each such function it must be the case that for every $$i$$, $$f\left( i \right) = i$$
$$Q$$. For each such function it must be the case that for some $$i$$, $$f\left( i \right) = 1$$
$$R$$. Each such function must be onto.

Which one of the following id CORRECT?

A
$$P, Q$$ and $$R$$ are true
B
Only $$Q$$ and $$R$$ are true
C
Only $$P$$ and $$Q$$ are true
D
Only $$R$$ is true
GATE CSE Subjects
EXAM MAP
Medical
NEET