$${\rm I}.$$ $$\,\,\neg \forall x\left( {P\left( x \right)} \right)$$
$${\rm I}{\rm I}.\,\,\,\,\,\,\neg \exists x\left( {P\left( x \right)} \right)$$
$${\rm I}{\rm I}{\rm I}.\,\,\,\,\,\,\neg \exists x\left( {\neg P\left( x \right)} \right)$$
$${\rm I}V.\,\,\,\,\,\,\exists x\left( {\neg P\left( x \right)} \right)$$
Which of the above are equivalent?
$${\rm I}.$$ $${\rm P}\, \vee \sim Q$$
$${\rm I}{\rm I}.$$ $$ \sim \left( { \sim {\rm P} \wedge Q} \right)$$
$${\rm I}{\rm I}{\rm I}.$$ $$\left( {{\rm P} \wedge Q} \right) \vee \left( {{\rm P} \wedge \sim Q} \right) \vee \left( { \sim {\rm P} \wedge \sim Q} \right)$$
$${\rm I}V.$$ $$\left( {{\rm P} \wedge Q} \right) \vee \left( {{\rm P} \wedge \sim Q} \right) \vee \left( { \sim {\rm P} \wedge Q} \right)$$
Each finite state automation has an equivalent pushdown automation.