1
GATE ME 2015 Set 1
MCQ (Single Correct Answer)
+1
-0.3
Consider fully developed flow in a circular pipe with negligible entrance length effects. Assuming the mass flow rate, density and friction factor to be constant, if the length of the pipe is doubled and the diameter is halved, the head loss due to friction will increase by a factor of
A
$$4$$
B
$$16$$
C
$$32$$
D
$$64$$
2
GATE ME 2010
MCQ (Single Correct Answer)
+1
-0.3
Maximum velocity of a one-dimensional incompressible fully developed viscous flow, between two fixed parallel plates, is $$6\,\,m{s^{ - 1}}.$$ Then mean velocity (in $$m{s^{ - 1}}$$) of the flow is
A
$$2$$
B
$$3$$
C
$$4$$
D
$$5$$
3
GATE ME 2009
MCQ (Single Correct Answer)
+1
-0.3
The velocity profile of a fully developed laminar flow in a straight circular pipe, as shown in the figure, is given by the expression. $$$u\left( r \right) = {{ - {R^2}} \over {4\mu }}\left( {{{dp} \over {dx}}} \right)\left( {1 - {{{r^2}} \over {{R^2}}}} \right)$$$
Where $${{dp} \over {dx}}$$ is a constant.

GATE ME 2009 Fluid Mechanics - Laminar Flow Question 20 English

The average velocity of fluid in the pipe is

A
$${{ - {R^2}} \over {8\mu }}\left( {{{dp} \over {dx}}} \right)$$
B
$${{ - {R^2}} \over {4\mu }}\left( {{{dp} \over {dx}}} \right)$$
C
$${{ - {R^2}} \over {2\mu }}\left( {{{dp} \over {dx}}} \right)$$
D
$${{ - {R^2}} \over \mu }\left( {{{dp} \over {dx}}} \right)$$
4
GATE ME 1995
Fill in the Blanks
+1
-0
In fully developed laminar flow in the circular pipe, the head loss due to friction is directly proportional to ....... (Mean velocity/square of the mean velocity)
GATE ME Subjects
Turbo Machinery
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12