1
GATE ME 2013
MCQ (Single Correct Answer)
+2
-0.6
A steel ball of diameter $$60$$ $$mm$$ is initially in thermal equilibrium at $${1030^ \circ }C$$ in a furnace. It is suddenly removed from the furnace and cooled in ambient air at $${30^ \circ }C$$ with convective heat transfer coefficient $$h = 20\,W/{m^2}K.$$ The thermo-physical properties of steel are: density $$\rho = 7800\,\,kg/{m^3},$$ , conductivity $$k = 40 W/mK$$ and specific heat $$c = 600 J/kgK.$$ The time required in seconds to cool the steel ball in air from $${1030^ \circ }C$$ to $${430^ \circ }C$$ is
A
$$519$$
B
$$931$$
C
$$1195$$
D
$$2144$$
2
GATE ME 2011
MCQ (Single Correct Answer)
+2
-0.6
A spherical steel ball of $$12mm$$ diameter is initially at $$100K.$$ It is slowly cooled in a surrounding of $$300K.$$ The heat transfer coefficient between the steel ball and the surrounding is $$5W/{m^2}K.$$ The thermal conductivity of steel is $$20$$ $$W/mK.$$ The temperature difference between the centre and the surface of steel ball is
A
large because conduction resistance is far high than the convective resistance.
B
large because conduction resistance is far less than the convective resistance.
C
small because conduction resistance is far high than the convective resistance.
D
small because conduction resistance is far less than the convective resistance.
3
GATE ME 2010
MCQ (Single Correct Answer)
+2
-0.6
A fin has $$5mm$$ diameter and $$100mm$$ length. The thermal conductivity of fin material is $$400W/m K.$$ One end of the fin is maintained at $${130^ \circ }C$$ and its remaining surface is exposed to ambient air at $${30^ \circ }C.$$ if the convective heat transfer coefficient is $$40W/{m^2}K,$$ the heat loss (in $$W$$) from the fin is
A
$$0.08$$
B
$$5.0$$
C
$$7.0$$
D
$$7.8$$
4
GATE ME 2005
MCQ (Single Correct Answer)
+2
-0.6
A small copper ball of $$5$$ $$mm$$ diameter at $$500$$ $$K$$ is dropped into an oil bath whose temperature is $$300$$ $$K.$$ the thermal conductivity of copper is $$400$$ $$W/m.$$ $$K,$$ its density $$9000\,\,kg/{m^3}$$ and its specific heat $$385\,J/kg.\,\,K.$$ if the heat transfer coefficient is $$250\,\,W/{m^2}K$$ and lumped analysis is assumed to be valid, the rate of fall of the temperature of the ball at the beginning of cooling will be, in $$K/s.$$
A
$$8.7$$
B
$$13.9$$
C
$$17.3$$
D
$$27.7$$
GATE ME Subjects
Turbo Machinery
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12