1
GATE ME 2016 Set 1
Numerical
+2
-0
A steel ball of $$10$$ $$mm$$ diameter at $$1000$$ $$K$$ is required to be cooled to $$350$$ $$K$$ by immersing it in a
water environment at $$300$$ $$K.$$ The convective heat transfer coefficient is $$1000\,\,W/{m^2}$$-$$K.$$ Thermal
conductivity of steel is $$40$$ $$W/m$$-$$K.$$ The time constant for the cooling process $$\tau $$ is $$16s.$$ The time
required (in $$s$$) to reach the final temperature is __________________.
Your input ____
2
GATE ME 2013
MCQ (Single Correct Answer)
+2
-0.6
A steel ball of diameter $$60$$ $$mm$$ is initially in thermal equilibrium at $${1030^ \circ }C$$ in a furnace. It is suddenly removed from the furnace and cooled in ambient air at $${30^ \circ }C$$ with convective heat transfer coefficient $$h = 20\,W/{m^2}K.$$ The thermo-physical properties of steel are: density $$\rho = 7800\,\,kg/{m^3},$$ , conductivity $$k = 40 W/mK$$ and specific heat $$c = 600 J/kgK.$$ The time required in seconds to cool the steel ball in air from $${1030^ \circ }C$$ to $${430^ \circ }C$$ is
3
GATE ME 2011
MCQ (Single Correct Answer)
+2
-0.6
A spherical steel ball of $$12mm$$ diameter is initially at $$100K.$$ It is slowly cooled in a surrounding of $$300K.$$ The heat transfer coefficient between the steel ball and the surrounding is $$5W/{m^2}K.$$ The thermal conductivity of steel is $$20$$ $$W/mK.$$ The temperature difference between the centre and the surface of steel ball is
4
GATE ME 2010
MCQ (Single Correct Answer)
+2
-0.6
A fin has $$5mm$$ diameter and $$100mm$$ length. The thermal conductivity of fin material is $$400W/m K.$$ One end of the fin is maintained at $${130^ \circ }C$$ and its remaining surface is exposed to ambient air at $${30^ \circ }C.$$ if the convective heat transfer coefficient is $$40W/{m^2}K,$$ the heat loss (in $$W$$) from the fin is
Questions Asked from Fin Design and Transient Heat Conduction (Marks 2)
Number in Brackets after Paper Indicates No. of Questions
GATE ME Subjects
Engineering Mechanics
Machine Design
Strength of Materials
Heat Transfer
Production Engineering
Industrial Engineering
Turbo Machinery
Theory of Machines
Engineering Mathematics
Fluid Mechanics
Thermodynamics
General Aptitude