1
GATE CSE 2020
Numerical
+2
-0.67
A processor has 64 registers and uses 16-bit instruction format. It has two types of instructions: I-type and R-type. Each I-type instruction contains an opcode, a register name, and a 4-bit immediate value. Each R-type instruction contains an opcode and two register names. If there are 8 distinct I-type opcodes, then the maximum number of distinct R-type opcodes is _____.
Your input ____
2
GATE CSE 2018
Numerical
+2
-0
A processor has $$16$$ integer registers $$\left( {R0,\,\,R1,\,\,..\,\,,\,\,R15} \right)$$) and $$64$$ floating point registers $$(F0, F1,… , F63).$$ It uses a $$2$$-byte instruction format. There are four categories of instructions: Type-$$1,$$ Type-$$2,$$ Type-3, and Type-$$4.$$ Type-$$1$$ category consists of four instructions, each with $$3$$ integer register operands $$(3Rs)$$. Type-$$2$$ category consists of eight instructions, each with $$2$$ floating point register operands $$(2Fs).$$ Type-$$3$$ category consists of fourteen instructions, each with one integer register operand and one floating point register operand $$(1R+1F).$$ Type-$$4$$ category consists of $$N$$ instructions, each with a floating point register operand $$(1F).$$

The maximum value of $$N$$ is __________.

Your input ____
3
GATE CSE 2016 Set 2
Numerical
+2
-0
Consider a processor with $$64$$ registers and an instruction set of size twelve. Each instruction has five distinct fields, namely, opcode, two source register identifiers, one destination register identifier, and a twelve-bit immediate value. Each instruction must be stored in memory in a byte-aligned fashion. If a program has $$100$$ instructions, the amount of memory (in bytes) consumed by the program text is _____________.
Your input ____
4
GATE CSE 2015 Set 2
MCQ (Single Correct Answer)
+2
-0.6
Consider a processor with byte-addressable memory. Assume that all registers, including Program Counter $$(PC)$$ and Program Status Word $$(PSW),$$ are of size $$2$$ bytes. A stack in the main memory is implemented from memory location $${\left( {0100} \right)_{16}}$$ and it grows upward. The stack pointer $$(SP)$$ points to the top element of the stack. The current value of $$SP$$ is $${\left( {016E} \right)_{16}}$$. The CALL instruction is of two words, the first word is the op-code and the second word is the starting address of the subroutine (one word $$= 2$$ bytes). The CALL instruction is implemented as follows:

$$ \bullet \,\,\,\,\,\,\,\,$$ Store the current value of $$PC$$ in the stack
$$ \bullet \,\,\,\,\,\,\,\,$$ Store the value of $$PSW$$ register in the stack
$$ \bullet \,\,\,\,\,\,\,\,$$ Load the starting address of the subroutine in $$PC$$

The content of $$PC$$ just before the fetch of a CALL instruction is $$\left( {5FA0} \right){\,_{16}}.$$ After execution of the CALL instruction, the value of the stack pointer is

A
$$\left( {016A} \right){\,_{16}}$$
B
$$\left( {016C} \right){\,_{16}}$$
C
$$\left( {0170} \right){\,_{16}}$$
D
$$\left( {0172} \right){\,_{16}}$$
GATE CSE Subjects
Software Engineering
Web Technologies
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
CBSE
Class 12