1
GATE ECE 2017 Set 1
MCQ (Single Correct Answer)
+1
-0.3
Consider the $$5 \times 5$$ matrix $$A = \left[ {\matrix{ 1 & 2 & 3 & 4 & 5 \cr 5 & 1 & 2 & 3 & 4 \cr 4 & 5 & 1 & 2 & 3 \cr 3 & 4 & 5 & 1 & 2 \cr 2 & 3 & 4 & 5 & 1 \cr } } \right]$$
It is given that $$A$$ has only one real eigen value. Then the real eigen value of $$A$$ is
A
$$-2.5$$
B
$$0$$
C
$$15$$
D
$$25$$
2
GATE ECE 2017 Set 1
Numerical
+2
-0
A three dimensional region $$R$$ of finite volume is described by $$\,\,{x^2} + {y^2} \le {z^3},\,\,\,0 \le z \le 1$$
Where $$x, y, z$$ are real. The volume of $$R$$ correct to two decimal places is __________.
Your input ____
3
GATE ECE 2017 Set 1
MCQ (Single Correct Answer)
+2
-0.6
If the vector function
$$\,\,\overrightarrow F = \widehat a{}_x\left( {3y - k{}_1z} \right) + \widehat a{}_y\left( {k{}_2x - 2z} \right) - \widehat a{}_z\left( {k{}_3y + z} \right)\,\,\,$$
is irrotational, then the values of the constants $$\,{k_1},\,{k_2}\,\,$$ and $$\,{k_3}$$ respectively, are
A
$$0.3, -2.5, 0.5$$
B
$$0.0, 3.0, 2.0$$
C
$$0.3, 0.33, 0.5$$
D
$$4.0, 3.0, 2.0$$
4
GATE ECE 2017 Set 1
Numerical
+2
-0
Let $$\,\,\,{\rm I} = \int_c {\left( {2z\,dx + 2y\,dy + 2x\,dz} \right)} \,\,\,\,$$ where $$x, y, z$$ are real, and let $$C$$ be the straight line segment from point $$A: (0, 2, 1)$$ to point $$B: (4,1,-1).$$ The value of $${\rm I}$$ is ___________.
Your input ____
EXAM MAP