1
GATE ECE 2017 Set 1
Numerical
+1
-0
The voltage of an electromagnetic wave propagating in a coaxial cable with uniform characteristic impedance is $$V(l) = {e^{ - \gamma l\, + \,j\,\omega \,t}}$$ Volts, where $$l$$ is the distance along the length of the cable in metres, $$\gamma = (0.1\, + \,j40)\,\,{m^{ - 1}}$$ is the complex propagation constant, and $$\omega = \,2\,\pi \,\, \times \,\,{10^9}$$ rad/s is the angular frequency. The absolute value of the attenuation in the cable in dB/metre is ___________________.
Your input ____
2
GATE ECE 2017 Set 1
MCQ (Single Correct Answer)
+2
-0.6
The expression for an electric field in free space is $$E = {E_0}\left( {\widehat x + \widehat y + j2\widehat z} \right){e^{ - j\left( {\omega t - kx + ky} \right)}},$$ where $$x,{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} y,{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} z\,\,\,\,\,\,\,$$ represent the spatial coordinates, $$t$$ represents time, and $$\omega ,\,\,k$$ are contants. This electric field
3
GATE ECE 2017 Set 1
MCQ (Single Correct Answer)
+2
-0.6
A half wavelength dipole is kept in the x-y plane and oriented along $${45^ \circ }$$ from the x-axis. Determine the direction of null in the radiation pattern for $$0 \le \phi \le \pi $$. Here the angle $$\theta \left( {0 \le \theta \le \pi } \right)$$ is measured from the z-axis, and the angle $$\phi \left( {0 \le \phi \le 2\pi } \right)$$ is measured from the x-axis in the x-y plane.
4
GATE ECE 2017 Set 1
MCQ (Single Correct Answer)
+1
-0.3
Consider a wireless communication link between a transmitter and a receiver located in free space, with finite and strictly positive capacity. If the effective areas of the transmitter and the receiver antennas, and the distance between them are all doubled, and everything else remains unchanged, the maximum capacity of the wireless link
Paper analysis
Total Questions
Analog Circuits
5
Communications
5
Control Systems
6
Digital Circuits
5
Electromagnetics
5
Electronic Devices and VLSI
4
Engineering Mathematics
10
Microprocessors
2
Network Theory
3
Signals and Systems
7
General Aptitude
10
More papers of GATE ECE
GATE ECE 2024
GATE ECE 2023
GATE ECE 2022
GATE ECE 2021
GATE ECE 2019
GATE ECE 2018
GATE ECE 2017 Set 2
GATE ECE 2017 Set 1
GATE ECE 2016 Set 1
GATE ECE 2016 Set 3
GATE ECE 2016 Set 2
GATE ECE 2015 Set 3
GATE ECE 2015 Set 2
GATE ECE 2015 Set 1
GATE ECE 2014 Set 1
GATE ECE 2014 Set 4
GATE ECE 2014 Set 3
GATE ECE 2014 Set 2
GATE ECE 2013
GATE ECE 2012
GATE ECE 2011
GATE ECE 2010
GATE ECE 2009
GATE ECE 2008
GATE ECE 2007
GATE ECE 2006
GATE ECE 2005
GATE ECE 2004
GATE ECE 2003
GATE ECE 2002
GATE ECE 2001
GATE ECE 2000
GATE ECE 1999
GATE ECE 1998
GATE ECE 1997
GATE ECE 1996
GATE ECE 1995
GATE ECE 1994
GATE ECE 1993
GATE ECE 1992
GATE ECE 1991
GATE ECE 1990
GATE ECE 1989
GATE ECE 1988
GATE ECE 1987
GATE ECE
Papers
2024
2023
2022
2021
2019
2018
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
1990
1989
1988
1987