1
GATE ECE 2014 Set 4
Numerical
+1
-0
The magnitude of the gradient for the function $$f\left( {x,y,z} \right) = {x^2} + 3{y^2} + {z^3}\,\,$$ at the point $$(1,1,1)$$ is _________.
Your input ____
2
GATE ECE 2014 Set 4
Numerical
+1
-0
The directional derivative of $$f\left( {x,y} \right) = {{xy} \over {\sqrt 2 }}\left( {x + y} \right)$$ at $$(1, 1)$$ in the direction of the unit vector at an angle of $${\pi \over 4}$$ with $$y-$$axis, is given by ________.
Your input ____
3
GATE ECE 2014 Set 4
Numerical
+2
-0
Given $$\,\,\overrightarrow F = z\widehat a{}_x + x\widehat a{}_y + y\widehat a{}_z.\,\,$$ If $$S$$ represents the portion of the sphere $${x^2} + {y^2} + {z^2} = 1$$ for $$\,z \ge 0,$$ then $$\int\limits_s {\left( {\nabla \times \overrightarrow F .} \right)\overrightarrow {ds} \,\,} $$ is ________.
Your input ____
4
GATE ECE 2014 Set 4
MCQ (Single Correct Answer)
+1
-0.3
If calls arrive at a telephone exchange such that the time of arrival of any call is independent of the time of arrival of earlier of future calls, the probability distribution function of the total number of calls in a fixed time interval will be
A
Poisson
B
Gaussian
C
Exponential
D
Gamma
EXAM MAP