1
GATE ECE 2014 Set 4
MCQ (Single Correct Answer)
+1
-0.3
If calls arrive at a telephone exchange such that the time of arrival of any call is independent of the time of arrival of earlier or future calls, the probability distribution function of the total number of calls in a fixed time interval will be
2
GATE ECE 2014 Set 4
MCQ (Single Correct Answer)
+2
-0.6
Consider a discrete-time channel Y = X + Z, where the additive noise Z is signal- dependent. In particular, given the trasmitted symbol $$X\, \in \,\{ \, - \,a,\,\, + \,a\} $$ at any instant, the noise sample Z is chosen independently from a Gaussian distribution with mean $$\beta X$$ and unit variance. Assume a threshold detector with zero threshold at the receiver. When $$\beta $$ = 0 the BER was found to be $$Q\,(a) = 1\, \times \,{10^{ - 8}}$$.
$$\left( {Q\,\,(v)\, = {1 \over {\sqrt {2\,\pi } }}\,\int\limits_v^\infty {{e^{ - {u^2}/2}}} } \right.$$ du, and for v > 1,
use $$Q\,(v) \approx \,{e^{ - {v^2}/2}}$$
When $$\beta = - \,0.3,\,$$ the BER is closed to
use $$Q\,(v) \approx \,{e^{ - {v^2}/2}}$$
When $$\beta = - \,0.3,\,$$ the BER is closed to
3
GATE ECE 2014 Set 4
MCQ (Single Correct Answer)
+2
-0.6
Consider a communication scheme where the binary valued signal X satisfies P{X = + 1} = 0.75 and P {X = - 1} = 0.25. The received signal Y = X + Z, where Z is a Gaussian random variable with zero mean and variance $${\sigma ^2}$$. The received signal Y is fed to the threshold detector. The output of the threshold detector $${\hat X}$$ is:
$$$\hat X:\left\{ {\matrix{
{ + \,1,} & {Y\, > \tau } \cr
{ - \,1,} & {Y\, \le \,\,\tau .} \cr
} } \right.$$$
To achieve a minimum probability of error $$P\{ \hat X\, \ne \,X\} $$, the threshold $$\tau $$ should be
4
GATE ECE 2014 Set 4
MCQ (Single Correct Answer)
+1
-0.3
For the second order closed-loop system shown in the figure, the natural frequency (in rad/s)
is
Paper analysis
Total Questions
Analog Circuits
6
Communications
5
Control Systems
5
Digital Circuits
4
Electromagnetics
4
Electronic Devices and VLSI
5
Engineering Mathematics
11
Microprocessors
1
Network Theory
6
Signals and Systems
7
More papers of GATE ECE
GATE ECE 2024
GATE ECE 2023
GATE ECE 2022
GATE ECE 2021
GATE ECE 2019
GATE ECE 2018
GATE ECE 2017 Set 2
GATE ECE 2017 Set 1
GATE ECE 2016 Set 1
GATE ECE 2016 Set 3
GATE ECE 2016 Set 2
GATE ECE 2015 Set 3
GATE ECE 2015 Set 2
GATE ECE 2015 Set 1
GATE ECE 2014 Set 1
GATE ECE 2014 Set 4
GATE ECE 2014 Set 3
GATE ECE 2014 Set 2
GATE ECE 2013
GATE ECE 2012
GATE ECE 2011
GATE ECE 2010
GATE ECE 2009
GATE ECE 2008
GATE ECE 2007
GATE ECE 2006
GATE ECE 2005
GATE ECE 2004
GATE ECE 2003
GATE ECE 2002
GATE ECE 2001
GATE ECE 2000
GATE ECE 1999
GATE ECE 1998
GATE ECE 1997
GATE ECE 1996
GATE ECE 1995
GATE ECE 1994
GATE ECE 1993
GATE ECE 1992
GATE ECE 1991
GATE ECE 1990
GATE ECE 1989
GATE ECE 1988
GATE ECE 1987
GATE ECE
Papers
2024
2023
2022
2021
2019
2018
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
1990
1989
1988
1987