1
GATE ECE 2014 Set 4
MCQ (Single Correct Answer)
+2
-0.6
A stable linear time invariant (LTI) system has a transfer function H(s) = $${1 \over {{s^2} + s - 6}}$$. To make this system casual it needs to be cascaded with another LTI system having a transfer function H1(s). A correct choice for H1(s) among the following options is
A
s + 3
B
s - 2
C
s - 6
D
s + 1
2
GATE ECE 2014 Set 4
Numerical
+2
-0
A casual LTI system has zero initial conditions and impulse response h(t). Its input x(t) and output y(t) are related through the linear constant - coefficient differential equation $$${{{d^2}y\left( t \right)} \over {d{t^2}}} + \alpha {{dy\left( t \right)} \over {dt}} + {\alpha ^2}y\left( t \right) = x\left( t \right).$$$

Let another signal g(t) be defined as $$\left( t \right) = {\alpha ^2}\int_0^t {h\left( \tau \right)d\tau + {{dh\left( t \right)} \over {dt}} + \alpha h\left( t \right)} $$.

If G(s) is the Laplace transform of g(t), then the number of poles of G(s) is ______.

Your input ____
3
GATE ECE 2014 Set 4
MCQ (Single Correct Answer)
+2
-0.6
The N-point DFT X of a sequence x[n] 0 ≤ n ≤ N − 1 is given by
$$X\left[ k \right] = {1 \over {\sqrt N }}\,\,\sum\limits_{n = 0}^{N - 1} x \,[n\,]e{\,^{ - j{{2\pi } \over N}nk}}$$, 0$$ \le k \le N - 1$$
Denote this relation as X = DFT(x). For N= 4 which one of the following sequences satisfies DFT (DFT(x) ) = ___________.
A
x = $$\left[ {1\,2\,3\,4} \right]$$
B
x = $$\left[ {1\,2\,3\,2} \right]$$
C
x = $$\left[ {1\,3\,2\,2} \right]$$
D
x = $$\left[ {1\,2\,2\,3} \right]$$
4
GATE ECE 2014 Set 4
Numerical
+1
-0
The sequence x $$\left[ n \right]$$ = $${0.5^n}$$ u[n], where u$$\left[ n \right]$$ is the unit step sequence, is convolved with itself to obtain y $$\left[ n \right]$$ . Then $$\sum\limits_{n = \infty }^{ + \infty } y \left[ n \right]$$ is ____________.
Your input ____
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12