1
GATE ECE 2002
MCQ (Single Correct Answer)
+1
-0.3
In figure, the switch was closed for a long time before opening at t = 0. the voltage Vx at t = 0+ is GATE ECE 2002 Network Theory - Transient Response Question 49 English
A
25 V
B
50 V
C
-50 V
D
0 V
2
GATE ECE 2002
MCQ (Single Correct Answer)
+2
-0.6
If the 3-phase balanced source in Fig. delivers 1500 W at a leading power factor of 0.844, then the value of ZL (in ohm) is approximately GATE ECE 2002 Network Theory - Sinusoidal Steady State Response Question 57 English
A
$$90\angle32.44^\circ$$
B
$$80\angle32.44^\circ$$
C
$$80\angle-32.44^\circ$$
D
$$90\angle-32.44^\circ$$
3
GATE ECE 2002
MCQ (Single Correct Answer)
+1
-0.3

The differential equation for the current i(t) in the circuit of Fig. is

GATE ECE 2002 Network Theory - Network Elements Question 37 English
A
$$2\;\frac{\operatorname d^2\mathrm i}{\operatorname d\mathrm t^2}+\;2\;\frac{\operatorname d\mathrm i}{\mathrm{dt}}\;+\;\mathrm i(\mathrm t)\;=\sin\left(\mathrm t\right)$$
B
$$\frac{\operatorname d^2\mathrm i}{\operatorname d\mathrm t^2}+\;2\;\frac{\operatorname d\mathrm i}{\mathrm{dt}}\;+\;2\mathrm i(\mathrm t)\;=\cos\left(\mathrm t\right)$$
C
$$2\;\frac{\operatorname d^2\mathrm i}{\operatorname d\mathrm t^2}+\;2\;\frac{\operatorname d\mathrm i}{\mathrm{dt}}\;+\;\mathrm i(\mathrm t)\;=\cos\left(\mathrm t\right)$$
D
$$\frac{\operatorname d^2\mathrm i}{\operatorname d\mathrm t^2}+\;2\;\frac{\operatorname d\mathrm i}{\mathrm{dt}}\;+\;2\mathrm i(\mathrm t)\;=\sin\left(\mathrm t\right)$$
4
GATE ECE 2002
MCQ (Single Correct Answer)
+1
-0.3
The Fourier transform F $$\left\{ {{e^{ - t}}u(t)} \right\}$$ is equal to $${1 \over {1 + j2\pi f}}$$. Therefore, $$F\left\{ {{1 \over {1 + j2\pi t}}} \right\}$$ is
A
$${e^f}u(f)$$
B
$${e^{ - f}}$$ u(f)
C
$${e^f}u(f)$$
D
$${e^{ - f}}$$u(-f)
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12