1
AIPMT 2011 Prelims
MCQ (Single Correct Answer)
+4
-1
Standard electrode potential for Sn4+/Sn2+ couple is + 0.15 V and that for the Cr3+/Cr couple is $$-$$ 0.74 V. These two couples in their standard state are connected to make a cell. The cell potential will be
A
+ 1.19 V
B
+ 0.89 V
C
+ 0.18 V
D
+ 1.83 V
2
AIPMT 2011 Prelims
MCQ (Single Correct Answer)
+4
-1
Standard electrode potential of three metals X, Y and Z are $$-$$1.2 V, + 0.5 V and $$-$$ 3.0 V respectively. The reducing power of these metals will be
A
Y > Z > X
B
Y > X > Z
C
Z > X > Y
D
X > Y > Z
3
AIPMT 2010 Mains
MCQ (Single Correct Answer)
+4
-1
Consider the following relations for emf of an electrochemical cell
(i)   EMF of cell = (Oxidation potential of anode) $$-$$ (Reduction potential of cathode)
(ii)  EMF of cell = (Oxidation potential of anode) + (Reduction potential of cathode)
(iii) EMF of cell = (Reductional potential of anode) + (Reduction potential of cathode)
(iv) EMF of cell = (Oxidation potential of anode) $$-$$ (Oxidation potential of cathode)

Which of the above relations are correct?
A
(iii) and (i)
B
(i) and (ii)
C
(iii) and (iv)
D
(ii) and (iv)
4
AIPMT 2010 Mains
MCQ (Single Correct Answer)
+4
-1
Which of the following expressions correctly represents the equivalent conductance at infinite diluation of Al2(SO4)3. Given that $$\mathop \Lambda \limits^ \circ $$Al3+ and $$\mathop \Lambda \limits^ \circ $$so$$_4^{2 - }$$ are the equivalent conductances at infinite dilution of the respective ions?
A
$$2\mathop \Lambda \limits^ \circ $$Al3+   +   $$3\mathop \Lambda \limits^ \circ $$so$$_4^{2 - }$$
B
$$\mathop \Lambda \limits^ \circ $$Al3+   +   $$\mathop \Lambda \limits^ \circ $$so$$_4^{2 - }$$
C
($$\mathop \Lambda \limits^ \circ $$Al3+   +   $$\mathop \Lambda \limits^ \circ $$so$$_4^{2 - }$$) $$ \times $$ 6
D
$${1 \over 3}$$$$\mathop \Lambda \limits^ \circ $$Al3+   +   $${1 \over 2}$$$$\mathop \Lambda \limits^ \circ $$so$$_4^{2 - }$$
NEET Subjects
EXAM MAP