1
AIPMT 2012 Prelims
MCQ (Single Correct Answer)
+4
-1
Limiting molar conductivity of NH4OH
$$\left[ {} \right.$$i.e.  $$\Lambda _{m\left( {N{H_4}OH} \right)}^0$$$$\left. {} \right]$$ is equal to
A
$$\Lambda _{m\left( {N{H_4}OH} \right)}^0 + \Lambda _{m\left( {NaCl} \right)}^0 - \Lambda _{m\left( {NaOH} \right)}^0$$
B
$$\Lambda _{m\left( {NaOH} \right)}^0 + \Lambda _{m\left( {NaCl} \right)}^0 - \Lambda _{m\left( {N{H_4}Cl} \right)}^0$$
C
$$\Lambda _{m\left( {N{H_4}OH} \right)}^0 + \Lambda _{m\left( {N{H_4}Cl} \right)}^0 - \Lambda _{m\left( {HCl} \right)}^0$$
D
$$\Lambda _{m\left( {N{H_4}Cl} \right)}^0 + \Lambda _{m\left( {NaOH} \right)}^0 - \Lambda _{m\left( {NaCl} \right)}^0$$
2
AIPMT 2011 Mains
MCQ (Single Correct Answer)
+4
-1
A solution contains Fe2+, Fe3+ and I$$-$$ ions. This solution was treated with iodine at 35oC. Eo for Fe3+/Fe2+ is + 0.77 V and Eo for I2/2I$$-$$ = 0.536 V.
The favourable redox reaction is
A
I2 will be reduced to I$$-$$
B
there will be no redox reaction
C
I$$-$$ will be oxidised to I2
D
Fe2+ will be oxidised to Fe3+
3
AIPMT 2011 Prelims
MCQ (Single Correct Answer)
+4
-1
Standard electrode potential of three metals X, Y and Z are $$-$$1.2 V, + 0.5 V and $$-$$ 3.0 V respectively. The reducing power of these metals will be
A
Y > Z > X
B
Y > X > Z
C
Z > X > Y
D
X > Y > Z
4
AIPMT 2011 Prelims
MCQ (Single Correct Answer)
+4
-1
Standard electrode potential for Sn4+/Sn2+ couple is + 0.15 V and that for the Cr3+/Cr couple is $$-$$ 0.74 V. These two couples in their standard state are connected to make a cell. The cell potential will be
A
+ 1.19 V
B
+ 0.89 V
C
+ 0.18 V
D
+ 1.83 V
NEET Subjects
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
CBSE
Class 12