1
MHT CET 2024 4th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The variance of first 50 even natural numbers is

A
833
B
473
C
$\frac{437}{4}$
D
$\frac{833}{4}$
2
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

A student scores the following marks in five tests : $54,45,41,43,57$. His score is not known for the sixth test. If the mean score is 48 in six tests, then the standard deviation of marks in six tests is

A
$\frac{100}{\sqrt{3}}$
B
$\frac{10}{\sqrt{3}}$
C
$\frac{100}{3}$
D
$\frac{10}{3}$
3
MHT CET 2024 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The mean of $n$ observations is $\bar{x}$. If three observations $\mathrm{n}+1, \mathrm{n}-1,2 \mathrm{n}-1$ are added such that mean remains same, then value of $n$ is

A
$\frac{2 \bar{x}+1}{3}$
B
$\frac{3 \bar{x}-1}{4}$
C
$\frac{3 \bar{x}+1}{4}$
D
$\frac{\bar{x}+1}{4}$
4
MHT CET 2024 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Consider three observations $\mathrm{a}, \mathrm{b}$ and c such that $b=a+c$. If the standard deviation of $\mathrm{a}+2, \mathrm{~b}+2, \mathrm{c}+2$ is d , then ............ holds.

A
$\mathrm{b}^2=3\left(\mathrm{a}^2+\mathrm{c}^2+\mathrm{d}^2\right)$
B
$\mathrm{b}^2=\mathrm{a}^2+\mathrm{c}^2+3 \mathrm{~d}^2$
C
$b^2=3\left(a^2+c^2\right)-9 d^2$
D
$\mathrm{b}^2=3\left(\mathrm{a}^2+\mathrm{c}^2\right)+9 \mathrm{~d}^2$
MHT CET Subjects
EXAM MAP