1
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

A student scores the following marks in five tests : $54,45,41,43,57$. His score is not known for the sixth test. If the mean score is 48 in six tests, then the standard deviation of marks in six tests is

A
$\frac{100}{\sqrt{3}}$
B
$\frac{10}{\sqrt{3}}$
C
$\frac{100}{3}$
D
$\frac{10}{3}$
2
MHT CET 2024 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The mean of $n$ observations is $\bar{x}$. If three observations $\mathrm{n}+1, \mathrm{n}-1,2 \mathrm{n}-1$ are added such that mean remains same, then value of $n$ is

A
$\frac{2 \bar{x}+1}{3}$
B
$\frac{3 \bar{x}-1}{4}$
C
$\frac{3 \bar{x}+1}{4}$
D
$\frac{\bar{x}+1}{4}$
3
MHT CET 2024 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Consider three observations $\mathrm{a}, \mathrm{b}$ and c such that $b=a+c$. If the standard deviation of $\mathrm{a}+2, \mathrm{~b}+2, \mathrm{c}+2$ is d , then ............ holds.

A
$\mathrm{b}^2=3\left(\mathrm{a}^2+\mathrm{c}^2+\mathrm{d}^2\right)$
B
$\mathrm{b}^2=\mathrm{a}^2+\mathrm{c}^2+3 \mathrm{~d}^2$
C
$b^2=3\left(a^2+c^2\right)-9 d^2$
D
$\mathrm{b}^2=3\left(\mathrm{a}^2+\mathrm{c}^2\right)+9 \mathrm{~d}^2$
4
MHT CET 2024 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

A random variable $X$ has the following probability distribution

$\mathrm{X=}x_i$: 1 2 3 4
$\mathrm{P(X=}x_i)$ : 0.2 0.4 0.3 0.1

The mean and variance of X are respectively

A
2.3 and 6.1
B
2.3 and 0.1
C
2.3 and 0.81
D
2.3 and 0.9
MHT CET Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12