1
MHT CET 2024 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The mean of $n$ observations is $\bar{x}$. If three observations $\mathrm{n}+1, \mathrm{n}-1,2 \mathrm{n}-1$ are added such that mean remains same, then value of $n$ is

A
$\frac{2 \bar{x}+1}{3}$
B
$\frac{3 \bar{x}-1}{4}$
C
$\frac{3 \bar{x}+1}{4}$
D
$\frac{\bar{x}+1}{4}$
2
MHT CET 2024 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Consider three observations $\mathrm{a}, \mathrm{b}$ and c such that $b=a+c$. If the standard deviation of $\mathrm{a}+2, \mathrm{~b}+2, \mathrm{c}+2$ is d , then ............ holds.

A
$\mathrm{b}^2=3\left(\mathrm{a}^2+\mathrm{c}^2+\mathrm{d}^2\right)$
B
$\mathrm{b}^2=\mathrm{a}^2+\mathrm{c}^2+3 \mathrm{~d}^2$
C
$b^2=3\left(a^2+c^2\right)-9 d^2$
D
$\mathrm{b}^2=3\left(\mathrm{a}^2+\mathrm{c}^2\right)+9 \mathrm{~d}^2$
3
MHT CET 2024 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

A random variable $X$ has the following probability distribution

$\mathrm{X=}x_i$: 1 2 3 4
$\mathrm{P(X=}x_i)$ : 0.2 0.4 0.3 0.1

The mean and variance of X are respectively

A
2.3 and 6.1
B
2.3 and 0.1
C
2.3 and 0.81
D
2.3 and 0.9
4
MHT CET 2024 2nd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The mean of 100 observations is 50 and their standard deviation is 5 , then the sum of all squares of all the observations is

A
252500
B
250500
C
250000
D
255000
MHT CET Subjects
EXAM MAP