1
MHT CET 2024 4th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The value of $\cot \left(\operatorname{cosec}^{-1} \frac{5}{3}+\tan ^{-1} \frac{2}{3}\right)$ is

A
$\frac{5}{17}$
B
$\frac{6}{17}$
C
$\frac{3}{17}$
D
$\frac{4}{17}$
2
MHT CET 2024 4th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\sin \left(\cot ^{-1}(x+1)\right)=\cos \left(\tan ^{-1} x\right)$ then considering positive square roots, $x$ has the value ___________

A
0
B
$\frac{9}{4}$
C
$\frac{1}{2}$
D
$-\frac{1}{2}$
3
MHT CET 2024 4th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Considering only the Principal values of inverse functions, the set

$$A=\left\{x \geq 0 \left\lvert\, \tan ^{-1}(2 x)+\tan ^{-1}(3 x)=\frac{\pi}{4}\right.\right\}$$

A
contains two elements.
B
contains more than two elements.
C
is an empty set.
D
is a singleton set.
4
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $0< x < 1$, then

$$\sqrt{1+x^2}\left[\left\{x \cos \left(\cot ^{-1} x\right)+\sin \left(\cot ^{-1} x\right)\right\}^2-1\right]^{\frac{1}{2}}=$$

A
$\frac{x}{\sqrt{1+x^2}}$
B
$x$
C
$\sqrt{1+x^2}$
D
$x \sqrt{1+x^2}$
MHT CET Subjects
EXAM MAP