1
MHT CET 2021 22th September Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $$2 \tan ^{-1}(\cos x)=\tan ^{-1}(2 \operatorname{cosec} x)$$, then the value of $$x$$ is

A
$$\frac{\pi^{\mathrm{c}}}{6}$$
B
$$\frac{\pi^{\mathrm{c}}}{4}$$
C
$$\frac{\pi^{\mathrm{c}}}{3}$$
D
$$\frac{\pi^{\mathrm{c}}}{12}$$
2
MHT CET 2021 22th September Morning Shift
MCQ (Single Correct Answer)
+2
-0

$$\tan ^{-1}\left(\tan \frac{5 \pi}{6}\right)+\cos ^{-1}\left(\cos \frac{13 \pi}{6}\right)=$$

A
0
B
$$3 \pi$$
C
$$\frac{-\pi}{6}$$
D
$$\frac{\pi}{6}$$
3
MHT CET 2021 22th September Morning Shift
MCQ (Single Correct Answer)
+2
-0

$$y=\tan ^{-1}\left(\sqrt{\frac{1+\sin x}{1-\sin x}}\right), 0 \leq x < \frac{\pi}{2}$$, then $$\frac{d y}{d x}$$ at $$x=\frac{\pi}{6}$$ is

A
$$\frac{1}{4}$$
B
$$\frac{-1}{4}$$
C
$$\frac{-3}{2}$$
D
$$\frac{1}{2}$$
4
MHT CET 2021 21th September Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $$y=\tan ^{-1}\left[\frac{1}{1+x+x^2}\right]+\tan ^{-1}\left[\frac{1}{x^2+3 x+3}\right], x>0$$, then $$\frac{d y}{d x}=$$

A
$$\frac{1}{1+x^2}-\frac{1}{1+(x+2)^2}$$
B
$$\frac{-1}{1+x^2}+\frac{1}{1+(x+2)^2}$$
C
$$\frac{1}{1+x^2}+\frac{1}{1+(x+2)^2}$$
D
$$\frac{-1}{1+x^2}-\frac{1}{1+(x+2)^2}$$
MHT CET Subjects
EXAM MAP