1
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

Considering only the principal values of the inverse trigonometric function, the value of $\tan \left(\cos ^{-1} \frac{1}{5 \sqrt{2}}-\sin ^{-1} \frac{4}{\sqrt{17}}\right)$ is

A
$\frac{3}{34}$
B
$\frac{1}{34}$
C
$\frac{3}{29}$
D
$\frac{1}{29}$
2
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The number of solutions of $\tan ^{-1}\left(x+\frac{2}{x}\right)-\tan ^{-1}\left(\frac{4}{x}\right)-\tan ^{-1}\left(x-\frac{2}{x}\right)=0$ are

A
1
B
2
C
3
D
0
3
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The derivative of $\tan ^{-1}\left(\frac{\sqrt{1+x^2}-1}{x}\right)$ w.r.t. $\tan ^{-1}\left(\frac{2 x \sqrt{1-x^2}}{1-2 x^2}\right)$ at $x=0$ is

A
$\frac{1}{8}$
B
$\frac{1}{4}$
C
$\frac{1}{2}$
D
1
4
MHT CET 2025 22nd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $y=\sin ^{-1}\left(\frac{2 x}{1+x^2}\right)+\sec ^{-1}\left(\frac{1+x^2}{1-x^2}\right)$ then the value of $\frac{d y}{d x}$ at $x=\sqrt{3}$ is

A
1
B
$\frac{1}{2}$
C
0
D
$\frac{1}{4}$
MHT CET Subjects
EXAM MAP