1
MHT CET 2023 10th May Evening Shift
+2
-0

The domain of the function $$\mathrm{f}(x)=\sin ^{-1}\left(\frac{|x|+5}{x^2+1}\right)$$ is $$(-\infty,-a] \cup[a, \infty)$$. Then a is equal to

A
$$\frac{\sqrt{17}}{2}+1$$
B
$$\frac{\sqrt{17}-1}{2}$$
C
$$\frac{1+\sqrt{17}}{2}$$
D
$$\frac{\sqrt{17}}{2}-1$$
2
MHT CET 2023 10th May Evening Shift
+2
-0

The value of $$\tan ^{-1}(1)+\cos ^{-1}\left(-\frac{1}{2}\right)+\sin ^{-1}\left(-\frac{1}{2}\right)$$ is

A
$$\frac{5 \pi}{6}$$
B
$$\frac{\pi}{2}$$
C
$$\frac{2 \pi}{3}$$
D
$$\frac{3 \pi}{4}$$
3
MHT CET 2023 10th May Evening Shift
+2
-0

If $$\tan ^{-1} a+\tan ^{-1} b+\tan ^{-1} c=\pi$$, then which of the following statement is true?

A
$$a+b-c=a b c$$
B
$$a+b+c=2 a b c$$
C
$$\mathrm{abc}=1$$
D
$$a+b+c=a b c$$
4
MHT CET 2023 10th May Morning Shift
+2
-0

Considering only the principal values of an inverse function, the set

$$\mathrm{A}=\left\{x \geq 0 / \tan ^{-1} x+\tan ^{-1} 6 x=\frac{\pi}{4}\right\}$$

A
is an empty set.
B
is a singleton set.
C
contains more than two elements.
D
contains two elements.
EXAM MAP
Medical
NEET