The temperature of a liquid falls from 365 K to 359 K in 3 minutes. The time during which temperature of this liquid falls from 342 K to 338 K is [Let the room temperature be 296 K ]
In an isobaric process of an ideal gas, the ratio of work done by the system (W) during the expansion and the heat exchanged $(\mathrm{Q})$ is $\left(\gamma=\frac{\mathrm{C}_{\mathrm{p}}}{\mathrm{C}_{\mathrm{v}}}\right)$
Three identical metal spheres (of same surface area) have red, black and white colors and they are heated up to same temperature. They are allowed to cool. Arrange them from maximum rate of cooling to minimum rate of cooling
At certain temperature, $\operatorname{rod} \mathrm{A}$ and $\operatorname{rod} \mathrm{B}$ of different materials have lengths $\mathrm{L}_{\mathrm{A}}$ and $\mathrm{L}_{\mathrm{B}}$ respectively. Their coefficients of linear expansion are $\alpha_A$ and $\alpha_B$ respectively. It is observed that the difference between their lengths remains constant at all temperatures. The ratio $\mathrm{L}_{\mathrm{A}}: \mathrm{L}_{\mathrm{B}}$ is given by