1
MHT CET 2024 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The smallest positive value of $x$ in degrees satisfying the equation $\tan \left(x+100^{\circ}\right)=\tan \left(x+50^{\circ}\right) \tan (x) \tan \left(x-50^{\circ}\right)$ is

A
$30^{\circ}$
B
$15^{\circ}$
C
$45^{\circ}$
D
$60^{\circ}$
2
MHT CET 2024 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The number of solutions, of $2^{1+|\cos x|+|\cos x|^2+\ldots \ldots \cdots \cdots}=4$ in $(-\pi, \pi)$, is

A
2
B
3
C
4
D
6
3
MHT CET 2024 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

In $(0,2 \pi)$, the number of solutions of $\tan \theta+\sec \theta=2 \cos \theta$ are

A
0
B
1
C
2
D
3
4
MHT CET 2024 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The general solution of $\sin x-3 \sin 2 x+\sin 3 x=\cos x-3 \cos 2 x+\cos 3 x$ is

A
$x=\mathrm{n} \pi+\frac{\pi}{4}, \mathrm{n} \in \mathbb{Z}$
B
$x=2 \mathrm{n} \pi+\frac{\pi}{4}, \mathrm{n} \in \mathbb{Z}$
C
$x=\mathrm{n} \pi+(-1)^{\mathrm{n}} \frac{\pi}{4}, \mathrm{n} \in \mathbb{Z}$
D
$x=\frac{\mathrm{n} \pi}{2}+\frac{\pi}{8}, \mathrm{n} \in \mathbb{Z}$
MHT CET Subjects
EXAM MAP