The rms speed of a gas molecule is '$$\mathrm{V}$$' at pressure '$$\mathrm{P}$$'. If the pressure is increased by two times, then the rms speed of the gas molecule at the same temperature will be
Equal volumes of two gases, having their densíties in the ratio of $$1: 16$$ exert equal pressures on the walls of two containers. The ratio of their rms speads ($$\mathrm{C}_1: \mathrm{C}_2)$$ is
A cylindrical rod has temperatures '$$T_1$$' and '$$T_2$$' at its ends. The rate of flow of heat is '$$Q_1$$' cal $$\mathrm{s}^{-1}$$. If length and radius of the rod are doubled keeping temperature constant, then the rate of flow of heat '$$\mathrm{Q}_2$$' will be
The initial pressure and volume of a gas is '$$\mathrm{P}$$' and '$$\mathrm{V}$$' respectively. First by isothermal process gas is expanded to volume '$$9 \mathrm{~V}$$' and then by adiabatic process its volume is compressed to '$$\mathrm{V}$$' then its final pressure is (Ratio of specific heat at constant pressure to constant volume $$=\frac{3}{2}$$)