1
MHT CET 2023 9th May Morning Shift
+1
-0

The radii of two soap bubbles are $$r_1$$ and $$r_2$$. In isothermal condition they combine with each other to form a single bubble. The radius of resultant bubble is

A
$$\mathrm{R}=\frac{\mathrm{r}_1+\mathrm{r}_2}{2}$$
B
$$\mathrm{R}=\mathrm{r}_1\left(\mathrm{r}_1 \mathrm{r}_2+\mathrm{r}_2\right)$$
C
$$\mathrm{R}=\sqrt{\mathrm{r}_1^2+\mathrm{r}_2^2}$$
D
$$\mathrm{R}=\mathrm{r}_1+\mathrm{r}_2$$
2
MHT CET 2021 21th September Evening Shift
+1
-0

Under isothermal conditions, two soap bubbles of radii '$$r_1$$' and '$$r_2$$' combine to form a single soap bubble of radius '$$R$$'. The surface tension of soap solution is ( $$P=$$ outside pressure)

A
$$\frac{P\left(R^3+r_1^3+r_2^3\right)}{4\left(r_1^2-r_2^2+R^2\right)}$$
B
$$\frac{P^2+r_1^2+r_2^2}{4\left(r_1^2+r_2^2+R^2\right)}$$
C
$$\frac{P\left(R^3-r_1^3-r_2^3\right)}{4\left(r_1^2+r_2^2-R^2\right)}$$
D
$$\frac{P\left(R^2-r_1^2-r_2^2\right)}{4\left(r_1^3+r_2^3-R^3\right)}$$
3
MHT CET 2021 21th September Evening Shift
+1
-0

In a capillary tube having area of cross-section A, water rises to a height 'h'. If cross-sectional area is reduced to $$\frac{A}{9}$$, the rise of water in the capillary tube is

A
3h
B
9h
C
h
D
6h
4
MHT CET 2021 21th September Evening Shift
+1
-0

Water rises upto a height $$10 \mathrm{~cm}$$ in a capillary tube. It will rise to a height which is much more than $$10 \mathrm{~cm}$$ in a very long capillary tube if the apparatus is kept.

A
on the surface of the moon.
B
at the north pole.
C
in a lift moving up with an acceleration.
D
on the equator.
MHT CET Subjects
Physics
Mechanics
Optics
Electromagnetism
Modern Physics
Chemistry
Physical Chemistry
Inorganic Chemistry
Organic Chemistry
Mathematics
Algebra
Trigonometry
Calculus
Coordinate Geometry
EXAM MAP
Joint Entrance Examination