The power radiated by a black body is P and it radiates maximum energy around the wavelength $\lambda_0$. Now the temperature of the black body is changed so that it radiates maximum energy around wavelength $\left(\frac{\lambda_0}{2}\right)$. The power radiated by it will now increase by a factor of
A bucket full of hot water is kept in a room. If it cools from $75^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ in $t_1$ minutes, from $70^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$ in $\mathrm{t}_2$ minutes and $65^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ in $t_3$ minutes, then
An ideal diatomic gas is heated at constant pressure. What is the fraction of total energy applied, which increases the internal energy for the gas?
In ideal gas of $27^{\circ} \mathrm{C}$ is compressed adiabatically to $(8 / 27)$ of its original volume. If $\gamma=\frac{5}{3}$, the rise in temperature of a gas is