1
MHT CET 2024 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The general solution of $\sin x-3 \sin 2 x+\sin 3 x=\cos x-3 \cos 2 x+\cos 3 x$ is

A
$x=\mathrm{n} \pi+\frac{\pi}{4}, \mathrm{n} \in \mathbb{Z}$
B
$x=2 \mathrm{n} \pi+\frac{\pi}{4}, \mathrm{n} \in \mathbb{Z}$
C
$x=\mathrm{n} \pi+(-1)^{\mathrm{n}} \frac{\pi}{4}, \mathrm{n} \in \mathbb{Z}$
D
$x=\frac{\mathrm{n} \pi}{2}+\frac{\pi}{8}, \mathrm{n} \in \mathbb{Z}$
2
MHT CET 2024 4th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The Solution set of the equation $\sin ^2 \theta-\cos \theta=\frac{1}{4}$ in the interval $[0,2 \pi]$ is

A
$\left\{\frac{\pi}{6}, \frac{5 \pi}{6}\right\}$
B
$\left\{\frac{\pi}{3}, \frac{5 \pi}{3}\right\}$
C
$\left\{\frac{\pi}{3}, \frac{2 \pi}{3}\right\}$
D
$\left\{\frac{2 \pi}{3}, \frac{4 \pi}{3}\right\}$
3
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The number of all values of $\theta$ in the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ satisfying the equation $(1-\tan \theta)(1+\tan \theta) \sec ^2 \theta+2 \tan ^2 \theta=0$ is

A
1
B
0
C
2
D
infinitely many.
4
MHT CET 2024 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $S=\left\{x \in(-\pi, \pi) \mid x \neq 0, \pm \frac{\pi}{2}\right\}$. The sum of all distinct solutions of the equation $\sqrt{3} \sec x+\operatorname{cosec} x+2(\tan x-\cot x)=0$ in the set S is equal to

A
$-\frac{7 \pi}{9}$
B
$-\frac{2 \pi}{9}$
C
0
D
$\frac{5 \pi}{9}$
MHT CET Subjects
EXAM MAP