1
MHT CET 2021 20th September Morning Shift
MCQ (Single Correct Answer)
+1
-0

Specific heats of an ideal gas at constant pressure and volume are denoted by $$\mathrm{C}_{\mathrm{p}}$$ and $$\mathrm{C}_{\mathrm{v}}$$ respectively. If $$\gamma=\frac{\mathrm{C}_{\mathrm{p}}}{\mathrm{C}_{\mathrm{v}}}$$ and $$\mathrm{R}$$ it's the universal gas constant then $$\mathrm{C}_{\mathrm{v}}$$ is equal to

A
$$\frac{(\gamma-1)}{(\gamma+1)}$$
B
$$\frac{(\gamma-1)}{\mathrm{R}}$$
C
$$\mathrm{R} \gamma$$
D
$$\frac{R}{(\gamma-1)}$$
2
MHT CET 2021 20th September Morning Shift
MCQ (Single Correct Answer)
+1
-0

For a monoatomic gas, work done at constant pressure is W. The heat supplied at constant volume for the same rise in temperature of the gas is

A
W
B
$$\mathrm{\frac{5W}{2}}$$
C
$$\mathrm{\frac{W}{2}}$$
D
$$\mathrm{\frac{3W}{2}}$$
3
MHT CET 2020 19th October Evening Shift
MCQ (Single Correct Answer)
+1
-0

The root mean square velocity of molecules of a gas is $200 \mathrm{~m} / \mathrm{s}$. What will be the root mean square velocity of the molecules, if the molecular weight is doubled and the absolute temperature is halved?

A
$50 \mathrm{~m} / \mathrm{s}$
B
$200 \mathrm{~m} / \mathrm{s}$
C
$100 \mathrm{~m} / \mathrm{s}$
D
$\frac{100}{\sqrt{2}} \mathrm{~m} / \mathrm{s}$
4
MHT CET 2020 16th October Evening Shift
MCQ (Single Correct Answer)
+1
-0

Two spherical black bodies of radius $$r_1$$ and $$r_2$$ with surface temperature $$T_1$$ and $$T_2$$ respectively, radiate same power, then $$r_1: r_2$$ is

A
$$\left(\frac{T_2}{T_1}\right)^4$$
B
$$\left(\frac{T_2}{T_1}\right)^2$$
C
$$\left(\frac{T_1}{T_2}\right)^2$$
D
$$\left(\frac{T_1}{T_2}\right)^4$$
MHT CET Subjects
EXAM MAP