1
MHT CET 2021 21th September Evening Shift
+2
-0

$$\int\limits_{{{ - \pi } \over 2}}^{{\pi \over 2}} {{{\cos x} \over {1 + {e^x}}}dx = }$$

A
1
B
2
C
$$-$$1
D
0
2
MHT CET 2021 21th September Morning Shift
+2
-0

$$\int_\limits0^{\frac{\pi}{2}} \frac{\sin x-\cos x}{1-\sin x \cos x} d x=$$

A
$$\frac{\pi}{4}$$
B
$$\frac{2}{\pi}$$
C
0
D
$$\frac{\pi}{2}$$
3
MHT CET 2021 21th September Morning Shift
+2
-0

If $$f(x)=|x-1|+|x-2|+|x-3|, \forall x \in[1,4]$$, then $$\int_\limits1^4 f(x) d x=$$

A
$$\frac{1}{2}$$
B
7
C
$$\frac{9}{2}$$
D
$$\frac{19}{2}$$
4
MHT CET 2021 20th September Evening Shift
+2
-0

If $$2 f(x)-3 f\left(\frac{1}{x}\right)=x$$, then $$\int_\limits1^e f(x) d x=$$

A
$$-\left(\frac{2+\mathrm{e}^2}{5}\right)$$
B
$$\frac{2+e}{5}$$
C
$$\frac{2+e^2}{5}$$
D
$$\frac{2-e^2}{5}$$
MHT CET Subjects
Physics
Mechanics
Optics
Electromagnetism
Modern Physics
Chemistry
Physical Chemistry
Inorganic Chemistry
Organic Chemistry
Mathematics
Algebra
Trigonometry
Calculus
Coordinate Geometry
EXAM MAP
Joint Entrance Examination