In an electric field due to charge $Q$, a charge $q$ moves from point A to B as shown in the figure. The work done is ( $\varepsilon_0=$ permittivity of free space)
If a unit positive charge is shifted from a region of low potential to a region of high potential, then the electric potential energy of the system
Two point charges $+8 q$ and $-2 q$ are located at $\mathrm{X}=0$ (origin) and $\mathrm{X}=\mathrm{L}$ respectively. The net electric field due to these two charges is zero at point $P$ on $X$-axis. The location of point $P$ from the origin is
Consider a long uniformly charged cylinder having constant volume charge density ' $\lambda$ ' and radius ' $R$ '. A Gaussian surface is in the form of a cylinder of radius ' $r$ ' such that vertical axis of both the cylinders coincide. For a point inside the cylinder $(r< R)$, electric field is directly proportional to