1
MHT CET 2024 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\theta$ and $\alpha$ are not odd multiples of $\frac{\pi}{2}$ then $\tan \theta=\tan \alpha$ implies principal solution is

A
$\theta=\alpha+\frac{\mathrm{n} \pi}{2}, \mathrm{n} \in \mathbb{Z}$
B
$\quad \theta=\alpha+\frac{3 \mathrm{n} \pi}{2}, \mathrm{n} \in \mathbb{Z}$
C
$\theta=\mathrm{n} \pi+\alpha, \mathrm{n} \in \mathbb{Z}$
D
$\quad \theta=\frac{\mathrm{n} \pi}{4}+\alpha, \mathrm{n} \in \mathbb{Z}$
2
MHT CET 2024 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The general solution of $2 \sqrt{3} \cos ^2 \theta=\sin \theta$ is

A
$\mathrm{n} \pi+(-1)^{\mathrm{n}} \frac{\pi}{3}, \mathrm{n} \in \mathbb{Z}$
B
$\mathrm{n} \pi+(-1)^{\mathrm{n}} \frac{\pi}{6}, \mathrm{n} \in \mathbb{Z}$
C
$\mathrm{n} \pi \pm(-1)^{\mathrm{n}} \frac{\pi}{4}, \mathrm{n} \in \mathbb{Z}$
D
$\mathrm{n} \pi+(-1)^{\mathrm{n}} \frac{2 \pi}{3}, \mathrm{n} \in \mathbb{Z}$
3
MHT CET 2024 2nd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The principal solutions, of the equation $\sqrt{3} \sec x+2=0$, are

A
$\frac{2 \pi}{3}, \frac{4 \pi}{3}$
B
$\frac{4 \pi}{3}, \frac{5 \pi}{3}$
C
$\frac{5 \pi}{6}, \frac{7 \pi}{6}$
D
$\frac{7 \pi}{6}, \frac{11 \pi}{6}$
4
MHT CET 2023 14th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The principal solutions of the equation $$\sec x+\tan x=2 \cos x$$ are

A
$$\frac{\pi}{6}, \frac{5 \pi}{6}$$
B
$$\frac{\pi}{6}, \frac{\pi}{20}$$
C
$$\frac{\pi}{6}, \frac{2 \pi}{3}$$
D
$$\frac{\pi}{6}, \frac{\pi}{12}$$
MHT CET Subjects
EXAM MAP