1
MHT CET 2025 25th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\tan ^{-1}(x+1)+\tan ^{-1} x+\tan ^{-1}(x-1)=\tan ^{-1} 3$, then for $x<0$ the value of $500 x^4+270 x^2+997=$

A
6716
B
1767
C
1768
D
6717
2
MHT CET 2025 25th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $y=\tan ^{-1}\left(\frac{4 x}{1+5 x^2}\right)+\cot ^{-1}\left(\frac{3-2 x}{2+3 x}\right)$, then $\frac{\mathrm{d} y}{\mathrm{~d} x}$ is equal to

A
$\frac{5}{1+25 x^2}$
B
$\frac{1}{1+25 x^2}$
C
$\frac{1}{1+5 x^2}$
D
$\frac{5}{1+5 x^2}$
3
MHT CET 2025 25th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The principal value of $\cos ^{-1}\left[\frac{1}{\sqrt{2}}\left(\cos \frac{9 \pi}{10}-\sin \frac{9 \pi}{10}\right)\right]$ is

A
$\frac{3 \pi}{20}$
B
$\frac{17 \pi}{20}$
C
$\frac{7 \pi}{10}$
D
$\frac{\pi}{10}$
4
MHT CET 2025 23rd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\left(\cos ^{-1} x\right)^2-\left(\sin ^{-1} x\right)^2>0$, then

A
$x<\frac{1}{2}$
B
$-1
C
$0 \leqslant x<\frac{1}{\sqrt{2}}$
D
$-1 \leqslant x<\frac{1}{\sqrt{2}}$
MHT CET Subjects
EXAM MAP