Consider a long uniformly charged cylinder having constant volume charge density ' $\lambda$ ' and radius ' $R$ '. A Gaussian surface is in the form of a cylinder of radius ' $r$ ' such that vertical axis of both the cylinders coincide. For a point inside the cylinder $(r< R)$, electric field is directly proportional to
An electric dipole will have minimum potential energy when it subtends an angle
$$\left[\begin{array}{l} \cos 0^{\circ}=1 \\ \sin 0^{\circ}=0 \end{array}\right]\left[\begin{array}{l} \cos 90^{\circ}=0 \\ \cos \pi=-1 \end{array}\right]$$
A particle ' $A$ ' has charge ' $+q$ ' and a particle ' $B$ ' has charge ' $+4 q$ '. Each has same mass ' $m$ '. When they are allowed to fall from rest through the same potential, the ratio of their speeds will become (particle A to particle B)
$A$ sphere ' $A$ ' of radius ' $R$ ' has a charge ' $Q$ ' on it. The field at point B outside the sphere is ' $E$ '. Now another sphere of radius ' $2 R$ ' having a charge ' $-2 Q$ ' is placed at B. The total field at the point midway between A and B due to both the spheres is