1
MHT CET 2021 22th September Morning Shift
MCQ (Single Correct Answer)
+1
-0

Assuming the atom is in the ground state, the expression for the magnetic field at a point nucleus in hydrogen atom due to circular motion of electron is [$$\mu_0=$$ permeability of free space, $$\mathrm{m}=$$ mass of electron, $$\epsilon_0=$$ permittivity of free space, $$\mathrm{h}=$$ Planck's constant ]

A
$$\frac{\mu_0 \mathrm{e}^7 \pi \mathrm{m}^2}{8 \in_0^3 \mathrm{~h}^5}$$
B
$$\frac{\mu_0 \mathrm{e}^5 \pi \mathrm{m}^3}{8 \epsilon_0^3 \mathrm{~h}^5}$$
C
$$\frac{\mu_0 \mathrm{e}^5 \pi^2 \mathrm{~m}^2}{8 \epsilon_0^2 \mathrm{~h}^4}$$
D
$$\frac{\mu_0 \mathrm{e}^7 \pi^2 \mathrm{~m}^2}{8 \epsilon_0^3 \mathrm{~h}^5}$$
2
MHT CET 2021 21th September Evening Shift
MCQ (Single Correct Answer)
+1
-0

A, B and C are three parallel conductors of equal lengths carrying currents $$\mathrm{I}, \mathrm{I}$$ and $$2 \mathrm{I}$$ respectively. Distance between A and B is '$$x$$' and that between B and C is also '$$x$$'. $$F_1$$ is the force exerted by conductor $$\mathrm{B}$$ on $$\mathrm{A}$$. $$\mathrm{F}_2$$ is the force exerted by conductor $$\mathrm{C}$$ on $$\mathrm{A}$$. Current $$\mathrm{I}$$ in $$\mathrm{A}$$ and $$\mathrm{I}$$ in $$\mathrm{B}$$ are in same direction and current $$2 \mathrm{I}$$ in $$\mathrm{C}$$ is in opposite direction. Then

A
$$\mathrm{F}_1=\mathrm{F}_2$$
B
$$\mathrm{F}_2=2 \mathrm{R}_1$$
C
$$F_1=2 R_2$$
D
$$F_1=-F_2$$
3
MHT CET 2021 21th September Evening Shift
MCQ (Single Correct Answer)
+1
-0

Magnetic moment of revolving electron of charge (e) and mass (m) in terms of angular momentum (L) of electron is :

A
$$\frac{e L}{8 m}$$
B
$$\frac{\mathrm{eL}}{4 \mathrm{~m}}$$
C
$$\frac{\mathrm{eL}}{2 \mathrm{~m}}$$
D
$$\frac{\mathrm{eL}}{\mathrm{m}}$$
4
MHT CET 2021 21th September Evening Shift
MCQ (Single Correct Answer)
+1
-0

The magnetic flux near the axis and inside the air core solenoid of length $$60 \mathrm{~cm}$$ carrying current '$$\mathrm{I}$$' is $$1.57 \times 10^{-6} \mathrm{~Wb}$$. Its magnetic moment will be $$\left[\mu_0=4 \pi \times 10^{-7}\right.$$, SI unit and crosssectional area is very small as compared to length of solenoid.]

A
$$1 ~\mathrm{Am}^2$$
B
$$0.25 ~\mathrm{Am}^2$$
C
$$0.5 ~\mathrm{Am}^2$$
D
$$0.75 ~\mathrm{Am}^2$$
MHT CET Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12