1
MHT CET 2021 24th September Evening Shift
+1
-0

Assume that for solar radiation, surface temperature of the sun is $$6000 \mathrm{~K}$$. If Wien's constant 'b' is $$2.897 \times 10^{-3} \mathrm{~mK}$$, the value of maximum wavelength will be

A
4828$$\mathop A\limits^o$$
B
3648$$\mathop A\limits^o$$
C
6400$$\mathop A\limits^o$$
D
5890$$\mathop A\limits^o$$
2
MHT CET 2021 24th September Evening Shift
+1
-0

A metal sphere cools at the rate of $$1.5^{\circ} \mathrm{C} / \mathrm{min}$$ when its temperature is $$80^{\circ} \mathrm{C}$$. At what rate will it cool when its temperature falls to $$50^{\circ} \mathrm{C}$$. [Temperature of surrounding is $$30^{\circ} \mathrm{C}$$]

A
$$0.9^{\circ} \mathrm{C} / \mathrm{min}$$
B
$$0.6^{\circ} \mathrm{C} / \mathrm{min}$$
C
$$1.5^{\circ} \mathrm{C} / \mathrm{min}$$
D
$$1.2^{\circ} \mathrm{C} / \mathrm{min}$$
3
MHT CET 2021 24th September Evening Shift
+1
-0

A monoatomic gas is suddenly compressed to $$(1 / 8)^{\text {th }}$$ of its initial volume adiabatically. The ratio of the final pressure to initial pressure of the gas is $$(\gamma=5 / 3)$$

A
32
B
8
C
$$\frac{40}{3}$$
D
$$\frac{24}{5}$$
4
MHT CET 2021 24th September Morning Shift
+1
-0

A monoatomic ideal gas initially at temperature $$\mathrm{T}_1$$ is enclosed in a cylinder fitted with 8 frictionless piston. The gas is allowed to expand adiabatically to a temperature $$\mathrm{T}_2$$ by releasing the piston suddenly. $$\mathrm{L}_1$$ and $$\mathrm{L}_2$$ are the lengths of the gas columns before and after the expansion respectively. Then $$\frac{\mathrm{T}_2}{\mathrm{~T}_1}$$ is

A
$$\left(\frac{\mathrm{L}_2}{\mathrm{~L}_1}\right)^{2 / 3}$$
B
$$\left(\frac{L_1}{L_2}\right)^{2 / 3}$$
C
$$\left(\frac{\mathrm{L}_1}{\mathrm{~L}_2}\right)^{1 / 2}$$
D
$$\left(\frac{\mathrm{L}_2}{\mathrm{~L}_1}\right)^{1 / 2}$$
EXAM MAP
Medical
NEET