A random variable $X$ has the following probability distribution :
$$ \begin{array}{|l|c|c|c|c|} \hline \mathrm{X}=x & 1 & 2 & 3 & 4 \\ \hline \mathrm{P}(\mathrm{X}=x) & 0.1 & 0.2 & 0.3 & 0.4 \\ \hline \end{array} $$
The mean and standard deviation of $X$ are respectively
The probability distribution of a random variable X is given by
$$ \begin{array}{|l|c|c|c|c|c|} \hline \mathrm{X}=x_i & 0 & 1 & 2 & 3 & 4 \\ \hline \mathrm{P}\left(\mathrm{X}=x_i\right) & 0.4 & 0.3 & 0.1 & 0.1 & 0.1 \\ \hline \end{array} $$Then the variance of X is
Let mean and standard deviation of probability distribution
$$ \begin{array}{|c|c|c|c|c|} \hline \mathrm{X}=x & -3 & 0 & 1 & \alpha \\ \hline \mathrm{P}(\mathrm{X}=x) & \frac{1}{4} & \mathrm{~K} & \frac{1}{4} & \frac{1}{3} \\ \hline \end{array} $$
be $\mu$ and $\sigma$ respectively and if $\sigma-\mu=2$ then $\sigma=$
The mean and variance of seven observations are 8 and 16 respectively. If five of the observations are $2,4,10,12,14$, then the product of remaining two observations is