A straight wire of diameter $$0.4 \mathrm{~mm}$$ carrying a current of $$2 \mathrm{~A}$$ is replaced by another wire of 0.8 $$\mathrm{mm}$$ diameter carrying the same current. The magnetic field at distance $$(\mathrm{R})$$ from both the wires is 'B$$_1$$' and 'B$$_2$$' respectively. The relation between B$$_1$$ and B$$_2$$ is
An electron is projected along the axis of circular conductor carrying current '$$\mathrm{I}$$' The electron will experience
A thin ring of radius '$$R$$' meter has charge '$$q$$' coulomb uniformly spread on it. The ring rotates about its axis with a constant frequency of $$f$$ revolution/s. The value of magnetic induction in $$\mathrm{Wb} \mathrm{m}^{-2}$$ at the center of the ring is ($$\mu_0=$$ Permeability of free space)
A particle having a charge $$100 \mathrm{e}$$ is revolving in a circular path of radius $$0.8 \mathrm{~m}$$ with 1. r.p.s The magnetic field produced at the centre of the circle in SI unit is $$\left(\mu_0=\right.$$ permeability of vacuum, $$e= \left.1.6 \times 10^{-19} \mathrm{C}\right)$$