1
MHT CET 2023 12th May Evening Shift
MCQ (Single Correct Answer)
+1
-0

A monoatomic ideal gas initially at temperature '$$\mathrm{T}_1$$' is enclosed in a cylinder fitted with massless, frictionless piston. By releasing the piston suddenly the gas is allowed to expand to adiabatically to a temperature '$$\mathrm{T}_2$$'. If '$$\mathrm{L}_1$$' and '$$\mathrm{L}_2$$' are the lengths of the gas columns before and after expansion respectively, then $$\frac{\mathrm{T}_2}{\mathrm{~T}_1}$$ is

A
$$\frac{\mathrm{L}_1}{\mathrm{~L}_2}$$
B
$$\frac{\mathrm{L}_2}{\mathrm{~L}_1}$$
C
$$\left(\frac{\mathrm{L}_1}{\mathrm{~L}_2}\right)^{2 / 3}$$
D
$$\left(\frac{\mathrm{L}_2}{\mathrm{~L}_1}\right)^{2 / 3}$$
2
MHT CET 2023 12th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

Let $$\gamma_1$$ be the ratio of molar specific heat at constant pressure and molar specific heat at constant volume of a monoatomic gas and $$\gamma_2$$ be the similar ratio of diatomic gas. Considering the diatomic gas molecule as a rigid rotator, the ratio $$\frac{\gamma_2}{\gamma_1}$$ is

A
$$\frac{37}{21}$$
B
$$\frac{27}{35}$$
C
$$\frac{21}{25}$$
D
$$\frac{35}{27}$$
3
MHT CET 2023 12th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

The molar specific heat of an ideal gas at constant pressure and constant volume is $$\mathrm{C}_{\mathrm{p}}$$ and $$\mathrm{C}_{\mathrm{v}}$$ respectively. If $$\mathrm{R}$$ is universal gas constant and $$\gamma=\frac{\mathrm{C}_{\mathrm{p}}}{\mathrm{C}_{\mathrm{v}}}$$ then $$\mathrm{C}_{\mathrm{v}}=$$

A
$$\frac{1-\gamma}{1+\gamma}$$
B
$$\frac{1+\gamma}{1-\gamma}$$
C
$$\frac{\gamma-1}{\mathrm{R}}$$
D
$$\frac{\mathrm{R}}{\gamma-1}$$
4
MHT CET 2023 12th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

A composite slab consists of two materials having coefficient of thermal conductivity $$\mathrm{K}$$ and $$2 \mathrm{~K}$$, thickness $$\mathrm{x}$$ and $$4 \mathrm{x}$$ respectively. The temperature of the two outer surfaces of a composite slab are $$\mathrm{T}_2$$ and $$\mathrm{T}_1\left(\mathrm{~T}_2 > \mathrm{T}_1\right)$$. The rate of heat transfer through the slab in a steady state is $$\left[\frac{\mathrm{A}\left(\mathrm{T}_2-\mathrm{T}_1\right) \mathrm{K}}{\mathrm{x}}\right] \cdot \mathrm{f}$$ where '$$\mathrm{f}$$' is equal to

A
1
B
$$\frac{2}{3}$$
C
$$\frac{1}{2}$$
D
$$\frac{1}{3}$$
MHT CET Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12