1
MHT CET 2021 24th September Evening Shift
+1
-0

A monoatomic gas is suddenly compressed to $$(1 / 8)^{\text {th }}$$ of its initial volume adiabatically. The ratio of the final pressure to initial pressure of the gas is $$(\gamma=5 / 3)$$

A
32
B
8
C
$$\frac{40}{3}$$
D
$$\frac{24}{5}$$
2
MHT CET 2021 24th September Morning Shift
+1
-0

A monoatomic ideal gas initially at temperature $$\mathrm{T}_1$$ is enclosed in a cylinder fitted with 8 frictionless piston. The gas is allowed to expand adiabatically to a temperature $$\mathrm{T}_2$$ by releasing the piston suddenly. $$\mathrm{L}_1$$ and $$\mathrm{L}_2$$ are the lengths of the gas columns before and after the expansion respectively. Then $$\frac{\mathrm{T}_2}{\mathrm{~T}_1}$$ is

A
$$\left(\frac{\mathrm{L}_2}{\mathrm{~L}_1}\right)^{2 / 3}$$
B
$$\left(\frac{L_1}{L_2}\right)^{2 / 3}$$
C
$$\left(\frac{\mathrm{L}_1}{\mathrm{~L}_2}\right)^{1 / 2}$$
D
$$\left(\frac{\mathrm{L}_2}{\mathrm{~L}_1}\right)^{1 / 2}$$
3
MHT CET 2021 24th September Morning Shift
+1
-0

For a monoatomic gas, the work done at constant pressure is '$$\mathrm{W}$$' The heat supplied at constant volume for the same rise in temperature of the gas is

$$[\gamma=\frac{C_p}{C_v}=\frac{5}{2}$$ for monoatomic gas]

A
$$2 \mathrm{~W}$$
B
$$\mathrm{W}$$
C
$$\frac{W}{2}$$
D
$$\frac{3 W}{2}$$
4
MHT CET 2021 24th September Morning Shift
+1
-0

An ideal gas with pressure $$\mathrm{P}$$, volume $$\mathrm{V}$$ and temperature $$\mathrm{T}$$ is expanded isothermally to a volume $$2 \mathrm{~V}$$ and a final pressure $$\mathrm{P}_{\mathrm{i}}$$. The same gas is expanded adiabatically to a volume $$2 \mathrm{~V}$$, the final pressure is $$\mathrm{P}_{\mathrm{a}}$$. In terms of the ratio of the two specific heats for the gas '$$\gamma$$', the ratio $$\frac{P_i}{P_a}$$ is

A
$$2^{\gamma+1}$$
B
$$2^{\gamma-1}$$
C
$$2^{1-\gamma}$$
D
$$2^\gamma$$
EXAM MAP
Medical
NEET