A monoatomic gas is heated at constant pressure. The percentage of total heat used for doing external work is
Two rods, one of copper ( Cu$)$ and the other of iron ( Fe ) having initial lengths $\mathrm{L}_1$ and $\mathrm{L}_2$ respectively are connected together to form a single rod of length $L_1+L_2$. The coefficient of linear expansion of Cu and Fe are $\alpha_c$ and $\alpha_i$ respectively. If the length of each rod increases by the same amount when their temperatures are raised by $t^{\circ} \mathrm{C}$, then ratio of $\frac{L_1-L_2}{L_1+L_2}$ will be
The specific heat of argon at constant pressure and constant volume are $C_p$ and $C_v$ respectively. It's density ' $\rho$ ' at N.T.P. will be $[\mathrm{P}$ and T are pressure and temperature respectively at N.T.P.]
The r.m.s. velocity of hydrogen at S.T.P. is ' $u$ ' $\mathrm{m} / \mathrm{s}$. If the gas is heated at constant pressure till its volume becomes three times, then the final temperature of the gas and the r.m.s. speed are respectively