A cylindrical rod is having temperatures $$\theta_1$$ and $$\theta_2$$ at its ends. The rate of heat flow is '$$Q$$' $$\mathrm{J}{\mathrm{s}}^{-1}$$. All the linear dimensions of the rod are doubled by keeping the temperatures constant. What is the new rate of flow of heat?
For a gas molecule with 6 degrees of freedom, which one of the following relation between gas constant '$$\mathrm{R}$$' and molar specific heat '$$\mathrm{C}_{\mathrm{v}}$$' is correct?
What is the ratio of the velocity of sound in hydrogen $$\left(\gamma=\frac{7}{5}\right)$$ to that in helium $$\left(\gamma=\frac{5}{3}\right)$$ at the same temperature? (Molecular weight of hydrogen and helium is 2 and 4 respectively.)
Equal volumes of two gases are kept in different containers having densities in the ratio 1 : 16. They exert equal pressures on the wall of their respective containers. Then the ratio of their r.m.s. velocities is