1
GATE ME 2015 Set 2
Numerical
+2
-0
Work is done on an adiabatic system due to which its velocity changes from $$10$$ $$m/s$$ to $$20$$ $$m/s,$$ elevation increases by $$20$$ $$m$$ and temperature increases by $$1$$ $$K$$. The mass of the system is $$10$$ $$kg,$$ $${{C_v} = 100J\left( {kg.K} \right)}$$ and gravitational acceleration is $$10\,\,m/{s^2}.$$ If there is no change in any other component of the energy of the system, the magnitude of total work done (in $$kJ$$) on the system is _______________.
2
GATE ME 2015 Set 1
Numerical
+2
-0
A well insulated rigid container of volume $$1{m^3}$$ contains $$1.0$$ $$kg$$ of an ideal gas $$\left[ {{C_p} =1000\,\,\,J/\left( {kg.K} \right)} \right.$$ and $$\left. {{C_v} = 800J/\left( {kg.K} \right)} \right]$$ at a pressure of $${10^5}\,\,Pa.$$ A stirrer is rotated at constant $$rpm$$ in the container for $$1000$$ rotations and the applied torque is $$100$$ $$N$$-$$m.$$ The final temperature of the gas (in $$K$$) is _______________.
3
GATE ME 2013
+2
-0.6
Specific enthalpy and velocity of steam at inlet and exit of a steam turbine, running under steady state, are as given below: The rate of heat loss from the turbine per $$kg$$ of steam flow rate is $$5$$ $$kW.$$ Neglecting changes in potential energy of steam, the power developed in $$kW$$ by the steam turbine per $$kg$$ of steam flow rate, is

A
$$901.2$$
B
$$911.2$$
C
$$17072.5$$
D
$$17082.5$$
4
GATE ME 2012
+2
-0.6
Steam enters an adiabatic turbine operating at steady state with an enthalpy of $$3251.0kJ/kg$$ and leaves as a saturated mixture at $$15$$ $$kPa$$ with quality (dryness fraction ) $$0.9.$$ The enthalpies of the saturated liquid and vapour at $$15$$ $$kPa$$ are $${h_f} = 225.94kJ/kg$$ and $${h_g} = 2598.3kJ/kg$$ respectively. The mass flow rate of steam is $$10kg/s.$$ Kinetic and potential energy changes are negligible. The power output of the turbine in $$MW$$ is
A
$$6.5$$
B
$$8.9$$
C
$$9.1$$
D
$$27.0$$
GATE ME Subjects
Engineering Mechanics
Strength of Materials
Theory of Machines
Engineering Mathematics
Machine Design
Fluid Mechanics
Turbo Machinery
Heat Transfer
Thermodynamics
Production Engineering
Industrial Engineering
General Aptitude
EXAM MAP
Joint Entrance Examination