1
GATE EE 2015 Set 2
Numerical
+2
-0
The volume enclosed by the surface $$f\left( {x,y} \right) = {e^x}$$ over the triangle bounded by the lines $$x=y;$$ $$x=0;$$ $$y=1$$ in the $$xy$$ plane is ________.
Your input ____
2
GATE EE 2014 Set 2
MCQ (Single Correct Answer)
+2
-0.6
The minimum value of the function $$f\left( x \right) = {x^3} - 3{x^2} - 24x + 100$$ in the interval $$\left[ { - 3,3} \right]$$ is
A
$$20$$
B
$$28$$
C
$$16$$
D
$$32$$
3
GATE EE 2014 Set 2
MCQ (Single Correct Answer)
+2
-0.6
To evaluate the double integral $$\int\limits_0^8 {\left( {\int\limits_{y/2}^{\left( {y/2} \right) + 1} {\left( {{{2x - y} \over 2}} \right)dx} } \right)dy,\,\,} $$ we make the substitution $$u = \left( {{{2x - y} \over 2}} \right)$$ and $$v = {y \over 2}.$$ The integral will reduce to
A
$$\int\limits_0^4 {\left( {\int\limits_0^2 {2udu} } \right)dv} $$
B
$$\int\limits_0^4 {\left( {\int\limits_0^1 {2udu} } \right)dv} $$
C
$$\int\limits_0^4 {\left( {\int\limits_0^1 {udu} } \right)dv} $$
D
$$\int\limits_0^4 {\left( {\int\limits_0^{21} {2udu} } \right)dv} $$
4
GATE EE 2012
MCQ (Single Correct Answer)
+2
-0.6
The maximum value of $$f\left( x \right) = {x^3} - 9{x^2} + 24x + 5$$ in the interval $$\left[ {1,6} \right]$$ is
A
$$21$$
B
$$25$$
C
$$41$$
D
$$46$$
GATE EE Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12