1
GATE EE 2017 Set 2
MCQ (Single Correct Answer)
+2
-0.6
Let $$g\left( x \right) = \left\{ {\matrix{ { - x} & {x \le 1} \cr {x + 1} & {x \ge 1} \cr } } \right.$$ and
$$f\left( x \right) = \left\{ {\matrix{ {1 - x,} & {x \le 0} \cr {{x^{2,}}} & {x > 0} \cr } } \right..$$
Consider the composition of $$f$$ and $$g,$$ i.e., $$\left( {f \circ g} \right)\left( x \right) = f\left( {g\left( x \right)} \right).$$ The number of discontinuities in $$\left( {f \circ g} \right)\left( x \right)$$ present in the interval $$\left( { - \infty ,0} \right)$$ is
A
$$0$$
B
$$1$$
C
$$2$$
D
$$4$$
2
GATE EE 2017 Set 1
MCQ (Single Correct Answer)
+2
-0.6
A function $$f(x)$$ is defined as
$$f\left( x \right) = \left\{ {\matrix{ {{e^x},x < 1} \cr {\ln x + a{x^2} + bx,x \ge 1} \cr } \,\,,\,\,} \right.$$ where $$x \in R.$$

Which one of the following statements is TRUE?

A
$$f(x)$$ is NOT differentiable at $$x=1$$ for any values of $$a$$ and $$b.$$
B
$$f(x)$$ is differentiable at $$x=1$$ for the unique values of $$a$$ and $$b.$$
C
$$f(x)$$ is differentiable at $$x=1$$ for all values of $$a$$ and $$b$$ such that $$a+b=c.$$
D
$$f(x)$$ is differentiable at $$x=1$$ for all values of $$a$$ and $$b.$$
3
GATE EE 2016 Set 2
MCQ (Single Correct Answer)
+2
-0.6
The value of the integral $$\,\,2\int_{ - \infty }^\infty {\left( {{{\sin \,2\pi t} \over {\pi t}}} \right)} dt\,\,$$ is equal to
A
$$0$$
B
$$0.5$$
C
$$1$$
D
$$2$$
4
GATE EE 2016 Set 1
Numerical
+2
-0
Let $$\,\,S = \sum\limits_{n = 0}^\infty {n{\alpha ^n}} \,\,$$ where $$\,\,\left| \alpha \right| < 1.\,\,$$ The value of $$\alpha $$ in the range $$\,\,0 < \alpha < 1,\,\,$$ such that $$\,\,S = 2\alpha \,\,$$ is ___________.
Your input ____
GATE EE Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12