1
GATE EE 2017 Set 2
MCQ (Single Correct Answer)
+2
-0.6
Let $$g\left( x \right) = \left\{ {\matrix{
{ - x} & {x \le 1} \cr
{x + 1} & {x \ge 1} \cr
} } \right.$$ and
$$f\left( x \right) = \left\{ {\matrix{ {1 - x,} & {x \le 0} \cr {{x^{2,}}} & {x > 0} \cr } } \right..$$
Consider the composition of $$f$$ and $$g,$$ i.e., $$\left( {f \circ g} \right)\left( x \right) = f\left( {g\left( x \right)} \right).$$ The number of discontinuities in $$\left( {f \circ g} \right)\left( x \right)$$ present in the interval $$\left( { - \infty ,0} \right)$$ is
$$f\left( x \right) = \left\{ {\matrix{ {1 - x,} & {x \le 0} \cr {{x^{2,}}} & {x > 0} \cr } } \right..$$
Consider the composition of $$f$$ and $$g,$$ i.e., $$\left( {f \circ g} \right)\left( x \right) = f\left( {g\left( x \right)} \right).$$ The number of discontinuities in $$\left( {f \circ g} \right)\left( x \right)$$ present in the interval $$\left( { - \infty ,0} \right)$$ is
2
GATE EE 2017 Set 1
MCQ (Single Correct Answer)
+2
-0.6
A function $$f(x)$$ is defined as
$$f\left( x \right) = \left\{ {\matrix{ {{e^x},x < 1} \cr {\ln x + a{x^2} + bx,x \ge 1} \cr } \,\,,\,\,} \right.$$ where $$x \in R.$$
$$f\left( x \right) = \left\{ {\matrix{ {{e^x},x < 1} \cr {\ln x + a{x^2} + bx,x \ge 1} \cr } \,\,,\,\,} \right.$$ where $$x \in R.$$
Which one of the following statements is TRUE?
3
GATE EE 2016 Set 2
MCQ (Single Correct Answer)
+2
-0.6
The value of the integral $$\,\,2\int_{ - \infty }^\infty {\left( {{{\sin \,2\pi t} \over {\pi t}}} \right)} dt\,\,$$ is equal to
4
GATE EE 2016 Set 1
Numerical
+2
-0
Let $$\,\,S = \sum\limits_{n = 0}^\infty {n{\alpha ^n}} \,\,$$ where $$\,\,\left| \alpha \right| < 1.\,\,$$ The value of $$\alpha $$ in the range $$\,\,0 < \alpha < 1,\,\,$$ such that $$\,\,S = 2\alpha \,\,$$ is ___________.
Your input ____
Questions Asked from Calculus (Marks 2)
Number in Brackets after Paper Indicates No. of Questions
GATE EE Subjects
Electric Circuits
Electromagnetic Fields
Signals and Systems
Electrical Machines
Engineering Mathematics
General Aptitude
Power System Analysis
Electrical and Electronics Measurement
Analog Electronics
Control Systems
Power Electronics