1
GATE EE 2009
+2
-0.6
If $$(x, y)$$ is continuous function defined over $$\left( {x,y} \right) \in \left[ {0,1} \right] \times \left[ {0,1} \right].\,\,\,$$ Given two constants, $$\,x > {y^2}$$ and $$\,y > {x^2},$$ the volume under $$f(x, y)$$ is
A
$$\,\,\int\limits_{y = 0}^{y = 1} {\int\limits_{x = {y^2}}^{x = \sqrt y } {f\left( {x,y} \right)dx\,dy\,\,} }$$
B
$$\int\limits_{y = {x^2}}^{y = 1} {\int\limits_{x = {y^2}}^{x = 1} {f\left( {x,y} \right)dx\,dy\,\,} }$$
C
$$\int\limits_{y = 0}^{y = 1} {\int\limits_{x = 0}^{x = 1} {f\left( {x,y} \right)dx\,dy\,\,} }$$
D
$$\int\limits_{x = 0}^{y = \sqrt x } {\int\limits_{x = 0}^{x = \sqrt y } {f\left( {x,y} \right)dx\,dy\,\,} }$$
2
GATE EE 2007
+2
-0.6
The integral $$\,\,{1 \over {2\pi }}\int\limits_0^{2\Pi } {Sin\left( {t - \tau } \right)\cos \tau \,d\tau \,\,\,}$$ equals
A
$$Sin\,t\cos t$$
B
$$0$$
C
$${1 \over 2}\,\,\cos \,t$$
D
$${1 \over 2}\,\,\sin \,t$$
3
GATE EE 2006
+2
-0.6
The expression $$V = \int\limits_0^H {\pi {R^2}{{\left( {1 - {h \over H}} \right)}^2}dh\,\,\,}$$ for the volume of a cone is equal to _________.
A
$$\int\limits_0^R {\pi {R^2}{{\left( {1 - {h \over H}} \right)}^2}dr\,\,\,}$$
B
$$\int\limits_0^R {\pi {R^2}{{\left( {1 - {h \over H}} \right)}^2}dh\,\,\,}$$
C
$$\int\limits_0^H {\,\,2\pi rH\left( {1 - {r \over R}} \right)dh\,\,\,}$$
D
$$\int\limits_0^R {\,\,2\pi rH{{\left( {1 - {r \over R}} \right)}^2}dr\,\,\,}$$
EXAM MAP
Medical
NEET