1
GATE EE 2016 Set 2
+2
-0.6
The value of the integral $$\,\,2\int_{ - \infty }^\infty {\left( {{{\sin \,2\pi t} \over {\pi t}}} \right)} dt\,\,$$ is equal to
A
$$0$$
B
$$0.5$$
C
$$1$$
D
$$2$$
2
GATE EE 2016 Set 1
Numerical
+2
-0
Let $$\,\,S = \sum\limits_{n = 0}^\infty {n{\alpha ^n}} \,\,$$ where $$\,\,\left| \alpha \right| < 1.\,\,$$ The value of $$\alpha$$ in the range $$\,\,0 < \alpha < 1,\,\,$$ such that $$\,\,S = 2\alpha \,\,$$ is ___________.
3
GATE EE 2015 Set 2
Numerical
+2
-0
The volume enclosed by the surface $$f\left( {x,y} \right) = {e^x}$$ over the triangle bounded by the lines $$x=y;$$ $$x=0;$$ $$y=1$$ in the $$xy$$ plane is ________.
4
GATE EE 2014 Set 2
+2
-0.6
To evaluate the double integral $$\int\limits_0^8 {\left( {\int\limits_{y/2}^{\left( {y/2} \right) + 1} {\left( {{{2x - y} \over 2}} \right)dx} } \right)dy,\,\,}$$ we make the substitution $$u = \left( {{{2x - y} \over 2}} \right)$$ and $$v = {y \over 2}.$$ The integral will reduce to
A
$$\int\limits_0^4 {\left( {\int\limits_0^2 {2udu} } \right)dv}$$
B
$$\int\limits_0^4 {\left( {\int\limits_0^1 {2udu} } \right)dv}$$
C
$$\int\limits_0^4 {\left( {\int\limits_0^1 {udu} } \right)dv}$$
D
$$\int\limits_0^4 {\left( {\int\limits_0^{21} {2udu} } \right)dv}$$
GATE EE Subjects
Electric Circuits
Electromagnetic Fields
Signals and Systems
Electrical Machines
Engineering Mathematics
General Aptitude
Power System Analysis
Electrical and Electronics Measurement
Analog Electronics
Control Systems
Power Electronics
Digital Electronics
EXAM MAP
Joint Entrance Examination