1
GATE EE 2016 Set 1
Numerical
+1
-0
The magnitude of three-phase fault currents at buses A and B of a power system are 10 pu and 8 pu, respectively. Neglect all resistances in the system and consider the pre-fault system to be unloaded. The pre-fault voltage at all buses in the system is 1.0 pu. The voltage magnitude at bus B during a three-phase fault at bus A is 0.8 pu. The voltage magnitude at bus A during a three-phase fault at bus B in pu, is __________.
Your input ____
2
GATE EE 2015 Set 2
MCQ (Single Correct Answer)
+1
-0.3
A $$3$$-bus power system network consists of $$3$$ transmission lines. The bus admittance matrix of the uncompensated system is
$$\left[ {\matrix{ { - j6} & {j3} & {j4} \cr {j3} & { - j7} & {j5} \cr {j4} & {j5} & { - j8} \cr } } \right]\,pu$$
If the shunt capacitance of all transmission lines is $$50$$% compensated, the imaginary part of the $$3$$rd row $$3$$rd column element (in $$pu$$) of the bus admittance matrix after compensation is
$$\left[ {\matrix{ { - j6} & {j3} & {j4} \cr {j3} & { - j7} & {j5} \cr {j4} & {j5} & { - j8} \cr } } \right]\,pu$$
If the shunt capacitance of all transmission lines is $$50$$% compensated, the imaginary part of the $$3$$rd row $$3$$rd column element (in $$pu$$) of the bus admittance matrix after compensation is
3
GATE EE 2014 Set 3
Numerical
+1
-0
A 183-bus power system has 150PQ buses and 32 PV buses. In the general case, to obtain the load flow solution using Newton-Raphson method in polar coordinates, the minimum number of simultaneous equations to be solved is ___________.
Your input ____
4
GATE EE 2012
MCQ (Single Correct Answer)
+1
-0.3
The bus admittance matrix of a three-bus three-line system is
$$y = j\left[ {\matrix{ { - 13} & {10} & 5 \cr {10} & { - 18} & {10} \cr 5 & {10} & { - 13} \cr } } \right]$$
If each transmission line between the two buses is represented by an equivalent $$\pi \,$$ network, the magnitude of the shunt susceptance of the line connecting bus $$1$$ and $$2$$ is
$$y = j\left[ {\matrix{ { - 13} & {10} & 5 \cr {10} & { - 18} & {10} \cr 5 & {10} & { - 13} \cr } } \right]$$
If each transmission line between the two buses is represented by an equivalent $$\pi \,$$ network, the magnitude of the shunt susceptance of the line connecting bus $$1$$ and $$2$$ is
Questions Asked from Load Flow Studies (Marks 1)
Number in Brackets after Paper Indicates No. of Questions
GATE EE Subjects
Electric Circuits
Electromagnetic Fields
Signals and Systems
Electrical Machines
Engineering Mathematics
General Aptitude
Power System Analysis
Electrical and Electronics Measurement
Analog Electronics
Control Systems
Power Electronics